Thomas Bohnacker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/368205/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PI3Kγ Regulatory Protein p84 Determines Mast Cell Sensitivity to Ras Inhibition—Moving Towards Cell Specific PI3K Targeting?. Frontiers in Immunology, 2020, 11, 585070.	4.8	10
2	4-(Difluoromethyl)-5-(4-((3 <i>R</i> ,5 <i>S</i>)-3,5-dimethylmorpholino)-6-((<i>R</i>)-3-methylmorpholino)-1, (PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. Journal of Medicinal Chemistry, 2020, 63, 13595-13617.	3,5-triazin-2- 6.4	yl)pyridin-2-ar 17
3	A Conformational Restriction Strategy for the Identification of a Highly Selective Pyrimido-pyrrolo-oxazine mTOR Inhibitor. Journal of Medicinal Chemistry, 2019, 62, 8609-8630.	6.4	24
4	Preclinical Development of PQR514, a Highly Potent PI3K Inhibitor Bearing a Difluoromethyl–Pyrimidine Moiety. ACS Medicinal Chemistry Letters, 2019, 10, 1473-1479.	2.8	28
5	(<i>S</i>)-4-(Difluoromethyl)-5-(4-(3-methylmorpholino)-6-morpholino-1,3,5-triazin-2-yl)pyridin-2-amine (PQR530), a Potent, Orally Bioavailable, and Brain-Penetrable Dual Inhibitor of Class I PI3K and mTOR Kinase. Journal of Medicinal Chemistry, 2019, 62, 6241-6261.	6.4	45
6	A class of highly selective inhibitors bind to an active state of PI3Kγ. Nature Chemical Biology, 2019, 15, 348-357.	8.0	42
7	Discovery and Preclinical Characterization of 5-[4,6-Bis({3-oxa-8-azabicyclo[3.2.1]octan-8-yl})-1,3,5-triazin-2-yl]-4-(difluoromethyl)pyridin-2-amine (PQR620), a Highly Potent and Selective mTORC1/2 Inhibitor for Cancer and Neurological Disorders. lournal of Medicinal Chemistry. 2018. 61. 10084-10105.	6.4	62
8	Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nature Communications, 2017, 8, 14683.	12.8	88
9	5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology. Journal of Medicinal Chemistry, 2017, 60, 7524-7538.	6.4	109
10	Abstract 1364: Novel 4-(pyrimidin-2-yl)morpholines targeting the colchicine-binding site of tubulin. , 2016, , .		0
11	Abstract 2652: Pre-clinical activity and mechanism of action of the novel dual PI3K/mTOR inhibitor PQR309 in B-cell lymphomas. , 2015, , .		1
12	Abstract 2664: PQR309: Structure-based design, synthesis and biological evaluation of a novel, selective, dual pan-PI3K/mTOR inhibitor. Cancer Research, 2015, 75, 2664-2664.	0.9	3
13	Abstract 4514: PQR309: A potent, brain-penetrant, dual pan-PI3K/mTOR inhibitor with excellent oral bioavailability and tolerability. Cancer Research, 2015, 75, 4514-4514.	0.9	3
14	Abstract 671: BKM120-mediated G2 arrest: Structural and functional segregation of off-target action and PI3K inhibition. , 2015, , .		1
15	Transient targeting of phosphoinositide 3-kinase acts as a roadblock in mast cells' route to allergy. Journal of Allergy and Clinical Immunology, 2013, 132, 959-968.	2.9	29
16	PKCβ Phosphorylates PI3Kγ to Activate It and Release It from GPCR Control. PLoS Biology, 2013, 11, e1001587.	5.6	62
17	Fluid-Phase Pinocytosis of Native Low Density Lipoprotein Promotes Murine M-CSF Differentiated Macrophage Foam Cell Formation. PLoS ONE, 2013, 8, e58054.	2.5	42
18	Murine bone marrow-derived macrophages differentiated with GM-CSF become foam cells by PI3KÎ ³ -dependent fluid-phase pinocytosis of native LDL. Journal of Lipid Research, 2012, 53, 34-42.	4.2	39

#	Article	IF	CITATIONS
19	Activation of the PI3K pathway increases TLR-induced TNF-α and IL-6 but reduces IL-1β production in mast cells. Cellular Signalling, 2011, 23, 866-875.	3.6	52
20	Targeting Melanoma with Dual Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitors. Molecular Cancer Research, 2009, 7, 601-613.	3.4	105
21	Ras is an indispensable coregulator of the class I _B phosphoinositide 3-kinase p87/p110γ. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20312-20317.	7.1	84
22	PI3KÎ ³ Adaptor Subunits Define Coupling to Degranulation and Cell Motility by Distinct PtdIns(3,4,5)P ₃ Pools in Mast Cells. Science Signaling, 2009, 2, ra27.	3.6	80