Kottakkaran Sooppy Nisar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/368198/kottakkaran-sooppy-nisar-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

616 papers

6,461 citations

34 h-index

45 g-index

699 ext. papers

10,197 ext. citations

3.2 avg, IF

7.51 L-index

#	Paper	IF	Citations
616	Results on Neutral Partial Integrodifferential Equations Using Monch-Krasnoselßkii Fixed Point Theorem with Nonlocal Conditions. <i>Fractal and Fractional</i> , 2022 , 6, 75	3	9
615	Solving multi-objective linear fractional transportation problem under neutrosophic environment. Journal of Interdisciplinary Mathematics, 2022 , 25, 123-136	1.2	0
614	Performance-based comparison of Yamada-Ota and Hamilton-Crosser hybrid nanofluid flow models with magnetic dipole impact past a stretched surface <i>Scientific Reports</i> , 2022 , 12, 29	4.9	5
613	New fractional identities, associated novel fractional inequalities with applications to means and error estimations for quadrature formulas. <i>Journal of Inequalities and Applications</i> , 2022 , 2022,	2.1	1
612	New soliton solutions of Heisenberg ferromagnetic spin chain model 2022 , 96, 1		1
611	Cumulative Impact of Micropolar Fluid and Porosity on MHD Channel Flow: A Numerical Study. <i>Coatings</i> , 2022 , 12, 93	2.9	2
610	Abundant soliton wave solutions and the linear superposition principle for generalized (3+1)-D nonlinear wave equation in liquid with gas bubbles by bilinear analysis. <i>Results in Physics</i> , 2022 , 32, 1050) <i>ବ୍ୟ</i>	2
609	Hermite-Hadamard Fractional Inequalities for Differentiable Functions. <i>Fractal and Fractional</i> , 2022 , 6, 60	3	2
608	Alternate solution approach for ML-MOLFPP problems. <i>Journal of Interdisciplinary Mathematics</i> , 2022 , 25, 183-194	1.2	
607	Fractional Order Modeling the Gemini Virus in Capsicum annuum with Optimal Control. <i>Fractal and Fractional</i> , 2022 , 6, 61	3	15
606	Hydrodynamic and heat transfer analysis of dissimilar shaped nanoparticles-based hybrid nanofluids in a rotating frame with convective boundary condition <i>Scientific Reports</i> , 2022 , 12, 436	4.9	8
605	Evaluation of the Effect of Granite Waste Powder by Varying the Molarity of Activator on the Mechanical Properties of Ground Granulated Blast-Furnace Slag-Based Geopolymer Concrete <i>Polymers</i> , 2022 , 14,	4.5	3
604	A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators. <i>Fractal and Fractional</i> , 2022 , 6, 73	3	10
603	Endoscopy applications for the second law analysis in hydromagnetic peristaltic nanomaterial rheology <i>Scientific Reports</i> , 2022 , 12, 1580	4.9	2
602	Exact Controllability Results for Sobolev-Type Hilfer Fractional Neutral Delay Volterra-Fredholm Integro-Differential Systems. <i>Fractal and Fractional</i> , 2022 , 6, 81	3	O
601	An efficient numerical scheme for fractional model of telegraph equation. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 6383-6393	6.1	1
600	An analysis on the approximate controllability of Hilfer fractional neutral differential systems in Hilbert spaces. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 7291-7302	6.1	4

599	Some analytic and series solutions of integrable generalized Broer-Kaup system. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 7067-7074	6.1	О
598	Fractional order model for complex Layla and Majnun love story with chaotic behaviour. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 6725-6738	6.1	3
597	Thermal efficiency enhancement of solar aircraft by utilizing unsteady hybrid nanofluid: A single-phase optimized entropy analysis. <i>Sustainable Energy Technologies and Assessments</i> , 2022 , 52, 101898	4.7	6
596	Onset about non-isothermal flow of Williamson liquid over exponential surface by computing numerical simulation in perspective of Cattaneo Christov heat flux theory. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 6139-6150	6.1	7
595	Numerical solution of non-linear Bratu-type boundary value problems via quintic B-spline collocation method. <i>AIMS Mathematics</i> , 2022 , 7, 7257-7273	2.2	0
594	Heat flow saturate of Ag/MgO-water hybrid nanofluid in heated trigonal enclosure with rotate cylindrical cavity by using Galerkin finite element <i>Scientific Reports</i> , 2022 , 12, 2302	4.9	8
593	Certain Integral and Differential Formulas Involving the Product of Srivastavall Polynomials and Extended Wright Function. <i>Fractal and Fractional</i> , 2022 , 6, 93	3	1
592	Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 8207-8207	6.1	9
591	On generalized fractional integral operator associated with generalized Bessel-Maitland function. <i>AIMS Mathematics</i> , 2022 , 7, 3027-3046	2.2	
590	Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet. <i>International Communications in Heat and Mass Transfer</i> , 2022 , 130, 105799	5.8	8
589	Global proprieties of a delayed epidemic model with partial susceptible protection <i>Mathematical Biosciences and Engineering</i> , 2022 , 19, 209-224	2.1	2
588	Regularized Least Squares Twin SVM for Multiclass Classification. <i>Big Data Research</i> , 2022 , 27, 100295	3.7	2
587	Abundant M-fractional optical solitons to the pertubed Gerdjikov I vanov equation treating the mathematical nonlinear optics. <i>Optical and Quantum Electronics</i> , 2022 , 54, 1	2.4	1
586	Doubly periodic wave structure of the modified Schrdinger equation with fractional temporal evolution. <i>Results in Physics</i> , 2022 , 105128	3.7	О
585	New solutions for the generalized resonant nonlinear Schrdinger equation. <i>Results in Physics</i> , 2022 , 105153	3.7	7
584	An existence theorem for nonlinear functional Volterra integral equations via Petryshyn's fixed point theorem. <i>AIMS Mathematics</i> , 2022 , 7, 5594-5604	2.2	1
583	Performance analysis of a modified Newton method for parameterized dual fuzzy nonlinear equations and its application. <i>Results in Physics</i> , 2022 , 33, 105140	3.7	1
582	IRKO: An Improved Runge-Kutta Optimization Algorithm for Global Optimization Problems. <i>Computers, Materials and Continua</i> , 2022 , 70, 4803-4827	3.9	2

581	Marangoni convection flow of Al2O3 nanofluids past a porous stretching surface with thermal radiation effect in the presence of an inclined magnetic field. <i>Heat Transfer</i> , 2022 , 51, 534	3.1	6
580	Non-standard computational analysis of the stochastic COVID-19 pandemic model: An application of computational biology. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 619-630	6.1	6
579	BHGSO: Binary Hunger Games Search Optimization Algorithm for Feature Selection Problem. <i>Computers, Materials and Continua</i> , 2022 , 70, 557-579	3.9	5
578	Design of Computer Methods for the Solution of Cervical Cancer Epidemic Model. <i>Computers, Materials and Continua</i> , 2022 , 70, 1649-1666	3.9	2
577	Analysis of dengue transmission using fractional order scheme. <i>AIMS Mathematics</i> , 2022 , 7, 8408-8429	2.2	4
576	Dynamical behavior of tumor-immune system with fractal-fractional operator. <i>AIMS Mathematics</i> , 2022 , 7, 8751-8773	2.2	2
575	Results on controllability for Sobolev type fractional differential equations of order \$ 1 & amp;lt; r & with finite delay. <i>AIMS Mathematics</i> , 2022 , 7, 10215-10233	2.2	8
574	New approach on controllability of Hilfer fractional derivatives with nondense domain. <i>AIMS Mathematics</i> , 2022 , 7, 10079-10095	2.2	2
573	Significance of induced hybridized metallic and non-metallic nanoparticles in single-phase nano liquid flow between permeable disks by analyzing shape factor <i>Scientific Reports</i> , 2022 , 12, 3342	4.9	3
57 ²	Time fractional analysis of channel flow of couple stress Casson fluid using Fick's and Fourier's Laws <i>Scientific Reports</i> , 2022 , 12, 2956	4.9	1
571	Thermal analysis for [Formula: see text]-sodium alginate magnetized Jeffrey's nanofluid flow past a stretching sheet embedded in a porous medium <i>Scientific Reports</i> , 2022 , 12, 3287	4.9	2
57°	Dissipated electroosmotic EMHD hybrid nanofluid flow through the micro-channel <i>Scientific Reports</i> , 2022 , 12, 4771	4.9	5
569	Numerical assessment of heat and mass transportation in [Formula: see text] nanofluids influenced by Soret and Dufour effects <i>Scientific Reports</i> , 2022 , 12, 3987	4.9	2
568	Crank Nicholson scheme to examine the fractional-order unsteady nanofluid flow of free convection of viscous fluids <i>PLoS ONE</i> , 2022 , 17, e0261860	3.7	1
567	Some new type optical and the other soliton solutions of coupled nonlinear Hirota equation. <i>Results in Physics</i> , 2022 , 35, 105388	3.7	O
566	A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay. <i>Chaos, Solitons and Fractals</i> , 2022 , 157, 111916	9.3	10
565	Study of 3-D Prandtl Nanofluid Flow over a Convectively Heated Sheet: A Stochastic Intelligent Technique. <i>Coatings</i> , 2022 , 12, 24	2.9	4
564	Steady Magnetohydrodynamic Micropolar Fluid Flow and Heat and Mass Transfer in Permeable Channel with Thermal Radiation. <i>Coatings</i> , 2022 , 12, 11	2.9	О

563	Mass Transfer Past an Exponentially Stretching Surface with Variable Wall Concentration and MHD in Porous Medium. <i>Proceedings in Adaptation, Learning and Optimization</i> , 2022 , 10-21	0.2		
562	An investigation on boundary controllability for Sobolev-type neutral evolution equations of fractional order in Banach space. <i>AIMS Mathematics</i> , 2022 , 7, 11687-11707	2.2	1	
561	Results on neutral differential equation of sobolev type with nonlocal conditions. <i>Chaos, Solitons and Fractals</i> , 2022 , 158, 112060	9.3	2	
560	2D mixed convection non-Darcy model with radiation effect in a nanofluid over an inclined wavy surface. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 9965-9976	6.1	3	
559	An interpretation on controllability of Hilfer fractional derivative with nondense domain. <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 9941-9948	6.1	6	
558	Existence and continuous dependence results for fractional evolution integrodifferential equations of order r?(1,2). <i>AEJ - Alexandria Engineering Journal</i> , 2022 , 61, 9929-9939	6.1	4	
557	Numerical solution of system of fuzzy fractional order Volterra integro-differential equation using optimal homotopy asymptotic method. <i>AIMS Mathematics</i> , 2022 , 7, 13169-13191	2.2	2	
556	Analysis of Multi Term Fractional Differential Equations using Variational Iteration Method. <i>The Punjab University Journal of Mathematics</i> , 2022 , 15-31			
555	COVID-19 propagation and the usefulness of awareness-based control measures: A mathematical model with delay. <i>AIMS Mathematics</i> , 2022 , 7, 12091-12105	2.2	2	
554	Lie analysis, conserved vectors, nonlinear self-adjoint classification and exact solutions of generalized \$ left(N+1right) \$-dimensional nonlinear Boussinesq equation. <i>AIMS Mathematics</i> , 2022 , 7, 13139-13168	2.2		
553	Application of Darboß Fixed Point Theorem for Existence Result of Generalized 2D Functional Integral Equations. <i>Forum for Interdisciplinary Mathematics</i> , 2022 , 121-135	0.2		
552	Existence and controllability of Hilfer fractional neutral differential equations with time delay via sequence method. <i>AIMS Mathematics</i> , 2022 , 7, 12760-12780	2.2	О	
551	Homotopy analysis approach to study the dynamics of fractional deterministic Lotka-Volterra model. <i>Arab Journal of Basic and Applied Sciences</i> , 2022 , 29, 121-128	2.9	0	
550	Thermodynamic analysis for bioconvection peristaltic transport of nanofluid with gyrotactic motile microorganisms and Arrhenius activation energy. <i>Case Studies in Thermal Engineering</i> , 2022 , 34, 102055	5.6	3	
549	Joule heating and viscous dissipation effects in hydromagnetized boundary layer flow with variable temperature. <i>Case Studies in Thermal Engineering</i> , 2022 , 35, 102083	5.6	3	
548	Numerical study of generalized 2-D nonlinear Schrdinger equation using Kansa method. <i>Mathematics and Computers in Simulation</i> , 2022 , 200, 186-198	3.3	О	
547	Some fractional integral inequalities via \$ h \$-Godunova-Levin preinvex function. <i>AIMS Mathematics</i> , 2022 , 7, 13832-13844	2.2	2	
546	On the exact solutions of nonlinear extended Fisher-Kolmogorov equation by using the He's variational approach. <i>AIMS Mathematics</i> , 2022 , 7, 13874-13886	2.2	O	

Thermal analysis characterisation of solar-powered ship using Oldroyd hybrid nanofluids in 545 parabolic trough solar collector: An optimal thermal application. Nanotechnology Reviews, **2022**, 11, $2015-2037^3$ A note on existence and approximate controllability outcomes of Atangana-Baleanu neutral 544 3.7 6 fractional stochastic hemivariational inequality. Results in Physics, 2022, 105647 Knacks of neuro-computing to study the unsteady squeezed flow of MHD carbon nanotube with 5.8 2 543 entropy generation. International Communications in Heat and Mass Transfer, 2022, 135, 106140 Cubic spline solutions of the ninth order linear and non-linear boundary value problems. AEJ -6.1 542 Alexandria Engineering Journal, 2022, 61, 11635-11649 Computational examination of Jeffrey nanofluid through a stretchable surface employing Tiwari 541 1.3 1 and Das model. Open Physics, 2021, 19, 897-911 Some Inequalities for LR-\$left($\{h\}_{1}, \{h\}_{2}$ right)\$-Convex Interval-Valued Functions by Means 540 13 3.4 of Pseudo Order Relation. International Journal of Computational Intelligence Systems, 2021, 14, Heat Transfer Simulation for 3D MHD Rotating Hybrid NanoFluid Flow Between Parallel Plates in Parabolic Trough Solar Collector: A Numerical Study. Journal of Engineering Thermophysics, 2021, 1 539 1.4 30, 704-726 The improved thermal efficiency of Prandtl-Eyring hybrid nanofluid via classical Keller box 538 4.9 technique. Scientific Reports, 2021, 11, 23535 Novel approach to the analysis of fifth-order weakly nonlocal fractional Schr inger equation with 537 3.7 20 Caputo derivative. Results in Physics, 2021, 31, 104958 A new extension and applications of Caputo fractional derivative operator. Analysis (Germany), 536 0.4 **2021**, 41, 1-11 A new extension of Srivastavall triple hypergeometric functions and their associated properties. 0.4 5 535 Analysis (Germany), 2021, 41, 13-24 Analytical solutions of generalized differential equations using quadratic-phase Fourier transform. 2.2 2 534 AIMS Mathematics, **2021**, 7, 1925-1940 Comprehensive analysis on copper-iron (II, III)/oxide-engine oil Casson nanofluid flowing and thermal features in parabolic trough solar collector. Journal of Taibah University for Science, 2021, 533 3 19 15, 619-636 Classes of new analytical soliton solutions to some nonlinear evolution equations. Results in Physics, 532 3.7 1 2021, 31, 104947 New discussion on nonlocal controllability for fractional evolution system of order \$1 Advances in 3.6 531 4 Difference Equations, 2021, 2021, Ohmic heating effects and entropy generation for nanofluidic system of Ree-Eyring fluid: 530 27 Intelligent computing paradigm. International Communications in Heat and Mass Transfer, 2021, 129, 105683 Numerical solution of one- and two-dimensional time-fractional Burgers equation via Lucas 529 6.1 1 polynomials coupled with Finite difference method. AEJ - Alexandria Engineering Journal, 2021, More General Weighted-Type Fractional Integral Inequalities via Chebyshev Functionals. Fractal and 528 Fractional, **2021**, 5, 232

(2021-2021)

527	Computational analysis of thermal energy distribution of electromagnetic Casson nanofluid across stretched sheet: Shape factor effectiveness of solid-particles. <i>Energy Reports</i> , 2021 , 7, 7460-7477	4.6	11
526	Partial velocity slip effect on working magneto non-Newtonian nanofluids flow in solar collectors subject to change viscosity and thermal conductivity with temperature. <i>PLoS ONE</i> , 2021 , 16, e0259881	3.7	7
525	Entropy Amplified Solitary Phase Relative Probe on Engine Oil Based Hybrid Nanofluid. <i>Chinese Journal of Physics</i> , 2021 ,	3.5	9
524	Flow and heat transport phenomenon for dynamics of Jeffrey nanofluid past stretchable sheet subject to Lorentz force and dissipation effects. <i>Scientific Reports</i> , 2021 , 11, 22924	4.9	8
523	MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-FeO/water) using galerkin finite element analysis. <i>Scientific Reports</i> , 2021 , 11, 22635	4.9	9
522	Higher-order accurate and conservative hybrid numerical scheme for multi-variables time-fractional Vlasov-Maxwell system: An Atangana-Baleanu Caputo approach. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 5269-5269	6.1	
521	Dynamics of Different Nonlinearities to the Perturbed Nonlinear Schrdinger Equation via Solitary Wave Solutions with Numerical Simulation. <i>Fractal and Fractional</i> , 2021 , 5, 213	3	5
520	A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r?(1,2). <i>Chaos, Solitons and Fractals</i> , 2021 , 154, 111615	9.3	9
519	Galerkin finite element study for mixed convection (TiO-SiO/water) hybrid-nanofluidic flow in a triangular aperture heated beneath. <i>Scientific Reports</i> , 2021 , 11, 22905	4.9	9
518	A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r?(1,2) with delay. <i>Chaos, Solitons and Fractals</i> , 2021 , 153, 111565	9.3	9
517	Heat Transfer Impacts on Maxwell Nanofluid Flow over a Vertical Moving Surface with MHD Using Stochastic Numerical Technique via Artificial Neural Networks. <i>Coatings</i> , 2021 , 11, 1483	2.9	8
516	Comparative Study on Effects of Thermal Gradient Direction on Heat Exchange between a Pure Fluid and a Nanofluid: Employing Finite Volume Method. <i>Coatings</i> , 2021 , 11, 1481	2.9	7
515	Theoretical Analysis of Activation Energy Effect on Prandtl I yring Nanoliquid Flow Subject to Melting Condition. <i>Journal of Non-Equilibrium Thermodynamics</i> , 2021 ,	3.8	10
514	Properties of some higher-dimensional nonlinear Schrdinger equations. Results in Physics, 2021, 105073	3.7	0
513	Significance low oscillating magnetic field and Hall current in the nano-ferrofluid flow past a rotating stretchable disk. <i>Scientific Reports</i> , 2021 , 11, 23204	4.9	3
512	. IEEE Access, 2021 , 9, 151089-151109	3.5	2
511	Modified Optical Burst Switching (OBS) Based Edge Node Architecture Using Real-Time Scheduling Techniques. <i>IEEE Access</i> , 2021 , 9, 167305-167321	3.5	1
510	. IEEE Access, 2021 , 9, 139876-139887	3.5	3

509	Stratified heat transfer of magneto-tangent hyperbolic bio-nanofluid flow with gyrotactic microorganisms: Keller-Box solution technique. <i>Open Physics</i> , 2021 , 19, 568-582	1.3	
508	Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. <i>AIMS Mathematics</i> , 2021 , 7, 756-783	2.2	10
507	Fractional Dynamics of Typhoid Fever Transmission Models with Mass Vaccination Perspectives. <i>Fractal and Fractional</i> , 2021 , 5, 149	3	1
506	Chemical reaction and thermal radiation impact on a nanofluid flow in a rotating channel with Hall current. <i>Scientific Reports</i> , 2021 , 11, 19747	4.9	10
505	Finite difference simulations for magnetically effected swirling flow of Newtonian liquid induced by porous disk with inclusion of thermophoretic particles diffusion. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 4341-4341	6.1	8
504	Investigation of shape effects of Cu-nanoparticle on heat transfer of MHD rotating flow over nonlinear stretching sheet. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 4457-4457	6.1	3
503	Impact of Maxwell velocity slip and Smoluchowski temperature slip on CNTs with modified Fourier theory: Reiner-Philippoff model. <i>PLoS ONE</i> , 2021 , 16, e0258367	3.7	6
502	A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems. <i>Advances in Difference Equations</i> , 2021 , 2021,	3.6	9
501	Mathematical analysis of hepatitis B epidemic model with optimal control. <i>Advances in Difference Equations</i> , 2021 , 2021,	3.6	4
500	Numerical and sensitivity analysis of MHD bioconvective slip flow of nanomaterial with binary chemical reaction and Newtonian heating. <i>Heat Transfer</i> , 2021 , 50, 5439-5466	3.1	2
499	A semi-relativistic time-fractional Vlasov-Maxwell code for numerical simulation based on circular polarization and symmetric two-stream instability. <i>Results in Physics</i> , 2021 , 22, 103932	3.7	4
498	Single phase based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor. <i>Physica Scripta</i> , 2021 , 96, 065202	2.6	41
497	Numerical solution of two-dimensional fractional order Volterra integro-differential equations. <i>AIP Advances</i> , 2021 , 11, 035232	1.5	2
496	Nanomaterials in convection flow of nanofluid in upright channel with gradients. <i>Journal of Materials Research and Technology</i> , 2021 , 11, 1411-1423	5.5	7
495	Stochastic modeling of within host dynamics of HCV model under therapy. <i>Results in Physics</i> , 2021 , 22, 103826	3.7	1
494	A reliable numerical method for solving fractional reaction-diffusion equations. <i>Journal of King Saud University - Science</i> , 2021 , 33, 101320	3.6	7
493	Insight into kerosene conveying CNTs and Fe3O4 nanoparticles through a porous medium: significance of Coriolis force and entropy generation. <i>Physica Scripta</i> , 2021 , 96, 055705	2.6	21
492	Keller box study for inclined magnetically driven Casson nanofluid over a stretching sheet: single phase model. <i>Physica Scripta</i> , 2021 , 96, 065201	2.6	25

(2021-2021)

491	On the solution of a parabolic PDE involving a gas flow through a semi-infinite porous medium. <i>Results in Physics</i> , 2021 , 22, 103884	3.7	2	
490	Analytical behavior of the fractional Bogoyavlenskii equations with conformable derivative using two distinct reliable methods. <i>Results in Physics</i> , 2021 , 22, 103975	3.7	7	
489	Computational single-phase comparative study of a Williamson nanofluid in a parabolic trough solar collector via the Keller box method. <i>International Journal of Energy Research</i> , 2021 , 45, 10696-107	1 8 ·5	53	
488	Entropy Generation Incorporating ENanofluids under the Influence of Nonlinear Radiation with Mixed Convection. <i>Crystals</i> , 2021 , 11, 400	2.3	2	
487	Mathematical analysis and simulation of a stochastic COVID-19 L Ω y jump model with isolation strategy. Results in Physics, 2021 , 23, 103994	3.7	24	
486	Magneto-hydrodynamics (MHD) flow analysis with mixed convection moves through a stretching surface. <i>AIP Advances</i> , 2021 , 11, 045001	1.5	15	
485	Solitary wave patterns and conservation laws of fourth-order nonlinear symmetric regularized long-wave equation arising in plasma. <i>Ain Shams Engineering Journal</i> , 2021 , 12, 3919-3919	4.4	2	
484	q-Binomial Convolution and Transformations of q-Appell Polynomials. <i>Axioms</i> , 2021 , 10, 70	1.6	1	
483	Numerical study for epidemic model of hepatitis-B virus. European Physical Journal Plus, 2021 , 136, 1	3.1	3	
482	Certain new proportional and Hadamard proportional fractional integral inequalities. <i>Journal of Inequalities and Applications</i> , 2021 , 2021,	2.1	2	
481	Bernstein basis functions based algorithm for solving system of third order initial value problems. AEJ - Alexandria Engineering Journal, 2021 , 60, 2395-2404	6.1	1	
480	Numerical solution of 2D-fuzzy Fredholm integral equations using optimal homotopy asymptotic method. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 2483-2490	6.1	2	
479	Radiative heat transfer of second grade nanofluid flow past a porous flat surface: a single-phase mathematical model. <i>Physica Scripta</i> , 2021 , 96, 064006	2.6	49	
478	Uncertainty principles for the quadratic-phase Fourier transforms. <i>Mathematical Methods in the Applied Sciences</i> , 2021 , 44, 10416-10431	2.3	10	
477	Thermal transport investigation in AA7072 and AA7075 aluminum alloys nanomaterials based radiative nanofluids by considering the multiple physical flow conditions. <i>Scientific Reports</i> , 2021 , 11, 9837	4.9	6	
476	Fractional dynamics of huanglongbing transmission within a citrus tree. <i>Mathematical Methods in the Applied Sciences</i> , 2021 , 44, 11404-11424	2.3	8	
475	An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain. <i>Chaos, Solitons and Fractals</i> , 2021 , 146, 110915	9.3	24	
474	New exact static solutions of Einstein-Maxwell field equations with a magnetic dipole. <i>Results in Physics</i> , 2021 , 24, 104136	3.7	4	

473	Results on the approximate controllability of fractional hemivariational inequalities of order \$1 Advances in Difference Equations, 2021 , 2021,	3.6	4
472	A Fractional Epidemic Model with Mittag-Leffler Kernel for COVID-19. <i>Mathematical Biology and Bioinformatics</i> , 2021 , 16, 39-56	0.5	7
471	Fibonacci wavelet method for solving time-fractional telegraph equations with Dirichlet boundary conditions. <i>Results in Physics</i> , 2021 , 24, 104123	3.7	9
47°	Solutions to the Konopelchenko-Dubrovsky equation and the Landau-Ginzburg-Higgs equation via the generalized Kudryashov technique. <i>Results in Physics</i> , 2021 , 24, 104092	3.7	9
469	Computations of mixed convection slip flow around the surface of a sphere: Effects of thermophoretic transportation and viscous dissipation. <i>Heat Transfer</i> , 2021 , 50, 7349	3.1	7
468	Study on heat transfer aspects of solar aircraft wings for the case of Reiner-Philippoff hybrid nanofluid past a parabolic trough: Keller box method. <i>Physica Scripta</i> , 2021 , 96, 095220	2.6	19
467	Certain approximation properties of Brenke polynomials using Jakimovskilleviatan operators. <i>Journal of Inequalities and Applications</i> , 2021 , 2021,	2.1	2
466	Splines solutions of boundary value problems that arises in sculpturing electrical process of motors with two rotating mechanism circuit. <i>Physica Scripta</i> , 2021 , 96, 104001	2.6	16
465	Extension of natural transform method with Daftardar-Jafari polynomials for fractional order differential equations. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 3205-3217	6.1	4
464	A study on canine distemper virus (CDV) and rabies epidemics in the red fox population via fractional derivatives. <i>Results in Physics</i> , 2021 , 25, 104281	3.7	14
463	The multi-service schemes for SAC-OCDMA systems with variable code weight. <i>Optical and Quantum Electronics</i> , 2021 , 53, 1	2.4	4
462	Numerical Simulation of Heat Mass Transfer Effects on MHD Flow of Williamson Nanofluid by a Stretching Surface with Thermal Conductivity and Variable Thickness. <i>Coatings</i> , 2021 , 11, 684	2.9	6
461	Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins. <i>Case Studies in Thermal Engineering</i> , 2021 , 25, 100939	5.6	21
460	Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities. <i>Fractal and Fractional</i> , 2021 , 5, 54	3	3
459	Mathematical modeling of the COVID-19 pandemic with intervention strategies. <i>Results in Physics</i> , 2021 , 25, 104285	3.7	29
458	Effect of volume fraction and size of Al2O3 nanoparticles in thermal, frictional and economic performance of circumferential corrugated helical tube. <i>Case Studies in Thermal Engineering</i> , 2021 , 25, 100948	5.6	14
457	Prediction studies of the epidemic peak of coronavirus disease in Brazil via new generalised Caputo type fractional derivatives. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 3189-3204	6.1	25
456	Super-criticism of electrochemical double layer capacitor for diffusion phenomenon: A fractional application of ultracapacitor. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 3361-3368	6.1	3

455	Micropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink. <i>Physica Scripta</i> , 2021 , 96, 104010	2.6	18	
454	Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. <i>Mathematical Methods in the Applied Sciences</i> , 2021 , 44, 13	675 ³	18	
453	Mathematical analysis and numerical investigation of advection-reaction-diffusion computer virus model. <i>Results in Physics</i> , 2021 , 26, 104294	3.7	4	
452	A new aspect of generalized integral operator and an estimation in a generalized function theory. <i>Advances in Difference Equations</i> , 2021 , 2021,	3.6	2	
451	Fractional dynamics of 2019-nCOV in Spain at different transmission rate with an idea of optimal control problem formulation. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 2204-2204	6.1	3	
450	Simulation analysis of MHD hybrid Cu?Al2O3/H2O nanofluid flow with heat generation through a porous media. <i>International Journal of Energy Research</i> , 2021 , 45, 19165	4.5	16	
449	Numerical analysis of nonlinear mixed convective MHD chemically reacting flow of PrandtlEyring nanofluids in the presence of activation energy and Joule heating. <i>Journal of Thermal Analysis and Calorimetry</i> , 2021 , 145, 495-505	4.1	21	
448	A new study on existence and uniqueness of nonlocal fractional delay differential systems of order 1 . <i>Numerical Methods for Partial Differential Equations</i> , 2021 , 37, 949-961	2.5	24	
447	Semi-analytical solution of MHD free convective Jeffrey fluid flow in the presence of heat source and chemical reaction. <i>Ain Shams Engineering Journal</i> , 2021 , 12, 837-845	4.4	7	
446	Biorthogonal wavelets on the spectrum. <i>Mathematical Methods in the Applied Sciences</i> , 2021 , 44, 4479-	4499	6	
445	Magneto Marangoni flow of AL2O3 nanofluids with thermal radiation and heat source/sink effects over a stretching surface embedded in porous medium. <i>Case Studies in Thermal Engineering</i> , 2021 , 23, 100802	5.6	23	
444	A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. <i>Mathematical Methods in the Applied Sciences</i> , 2021 , 44, 4428-4447	2.3	37	
443	A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. <i>Chaos, Solitons and Fractals</i> , 2021 , 142, 110472	9.3	32	
442	Numerical investigation for the fractional nonlinear space-time telegraph equation via the trigonometric Quintic B-spline scheme. <i>Mathematical Methods in the Applied Sciences</i> , 2021 , 44, 4598-4	6 6 6	22	
441	On analysis and optimal control of a SEIRI epidemic model with general incidence rate. <i>Results in Physics</i> , 2021 , 20, 103681	3.7	6	
440	Second law efficiency analysis of air injection into inner tube of double tube heat exchanger. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 1465-1476	6.1	16	
439	A generalized model for quantitative analysis of sediments loss: A Caputo time fractional model. Journal of King Saud University - Science, 2021, 33, 101179	3.6	9	
	sournation range state of the s			

437	Solutions of BVPs arising in hydrodynamic and magnetohydro-dynamic stability theory using polynomial and non-polynomial splines. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 941-953	6.1	11
436	Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. <i>Mathematical Methods in the Applied Sciences</i> , 2021 , 44, 1438-1455	2.3	43
435	A New Metaheuristic Optimization Algorithms for Brushless Direct Current Wheel Motor Design Problem. <i>Computers, Materials and Continua</i> , 2021 , 67, 2227-2242	3.9	12
434	Temporal Stability Analysis of Magnetized Hybrid Nanofluid Propagating Through an Unsteady Shrinking Sheet: Partial Slip Conditions. <i>Computers, Materials and Continua</i> , 2021 , 66, 1963-1975	3.9	7
433	Construction and analysis of unified 4-point interpolating nonstationary subdivision surfaces. <i>Advances in Difference Equations</i> , 2021 , 2021,	3.6	1
432	m-Parameter Mittagleffler function, its various properties, and relation with fractional calculus operators. <i>Mathematical Methods in the Applied Sciences</i> , 2021 , 44, 5365-5384	2.3	3
431	Second Law Analysis of Magneto Radiative GO-MoS2/H2O[CH2OH)2 Hybrid Nanofluid. <i>Computers, Materials and Continua</i> , 2021 , 68, 213-228	3.9	4
430	Energy Reduction Through Memory Aware Real-Time Scheduling on Virtual Machine in Multi-Cores Server. <i>IEEE Access</i> , 2021 , 9, 55436-55447	3.5	O
429	Al2O3 and Al2O3 Nanomaterials based Nanofluid Models with Surface Diffusion: Applications for Thermal Performance in Multiple Engineering Systems and Industries. <i>Computers, Materials and Continua</i> , 2021 , 66, 1563-1576	3.9	4
428	Performance evaluation of 120 GB/s hybrid FSO-SACOCDMA-MDM system using newly designed ITM-Zero cross-correlation code. <i>Optical and Quantum Electronics</i> , 2021 , 53, 1	2.4	2
427	Numerical Analysis of Novel Coronavirus (2019-nCov) Pandemic Model with Advection. <i>Computers, Materials and Continua</i> , 2021 , 67, 2933-2953	3.9	3
426	Some new inequalities for the generalized Fox-Wright functions. <i>AIMS Mathematics</i> , 2021 , 6, 5452-5464	2.2	2
425	Estimation of generalized fractional integral operators with nonsingular function as a kernel. <i>AIMS Mathematics</i> , 2021 , 6, 4492-4506	2.2	
424	A Fractal-Fractional Model for the MHD Flow of Casson Fluid in a Channel. <i>Computers, Materials and Continua</i> , 2021 , 67, 1385-1398	3.9	7
423	New iterative approach for the solutions of fractional order inhomogeneous partial differential equations. <i>AIMS Mathematics</i> , 2021 , 6, 1348-1365	2.2	5
422	On the observability of conformable linear time-invariant control systems. <i>Discrete and Continuous Dynamical Systems - Series S</i> , 2021 , 14, 3837	2.8	1
421	Mathematical model to assess the imposition of lockdown during COVID-19 pandemic. <i>Results in Physics</i> , 2021 , 20, 103716	3.7	30
42 0	Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19. <i>Results in Physics</i> , 2021 , 20, 103722	3.7	55

419	Analysis and Dynamics of Fractional Order Mathematical Model of COVID-19 in Nigeria Using Atangana-Baleanu Operator. <i>Computers, Materials and Continua</i> , 2021 , 66, 1823-1848	3.9	31	
418	Hydromagnetic Flow of Prandtl Nanofluid Past Cylindrical Surface with Chemical Reaction and Convective Heat Transfer Aspects. <i>Mathematical Problems in Engineering</i> , 2021 , 2021, 1-16	1.1	5	
417	Is Social Distancing, and Quarantine Effective in Restricting COVID-19 Outbreak? Statistical Evidences from Wuhan, China. <i>Computers, Materials and Continua</i> , 2021 , 66, 1977-1985	3.9	4	
416	Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function. <i>AIMS Mathematics</i> , 2021 , 6, 4280-4295	2.2	4	
415	Convection heat mass transfer and MHD flow over a vertical plate with chemical reaction, arbitrary shear stress and exponential heating. <i>Scientific Reports</i> , 2021 , 11, 4265	4.9	9	
414	Thermal/ exergy and economic efficiency analysis of circumferentially corrugated helical tube with constant wall temperature. <i>Case Studies in Thermal Engineering</i> , 2021 , 23, 100803	5.6	21	
413	Melting performance enhancement of thermal storage system by utilizing shape and position of double fin. <i>Case Studies in Thermal Engineering</i> , 2021 , 23, 100813	5.6	14	
412	(?,??q []-Bipolar Fuzzy b -Ideals of BCK/BCI-Algebras. <i>Journal of Function Spaces</i> , 2021 , 2021, 1-8	0.8		
411	Particle dynamics around quintessential Reissner-Nordstrfh black hole. <i>Results in Physics</i> , 2021 , 21, 103	7907	1	
410	Mathematical analysis and design of the nonstandard computational method for an epidemic model of computer virus with delay Effect: Application of mathematical biology in computer science. <i>Results in Physics</i> , 2021 , 21, 103750	3.7	7	
409	Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method. <i>Results in Physics</i> , 2021 , 21, 103769	3.7	26	
408	Properties and Applications of a New Extended Gamma Function Involving Confluent Hypergeometric Function. <i>Journal of Mathematics</i> , 2021 , 2021, 1-12	1.2	2	
407	Approximate solutions of nonlinear two-dimensional Volterra integral equations. <i>Mathematical Methods in the Applied Sciences</i> , 2021 , 44, 5548-5559	2.3	1	
406	The Nonlocal Fractal Integral Reverse Minkowskill and Other Related Inequalities on Fractal Sets. <i>Mathematical Problems in Engineering</i> , 2021 , 2021, 1-10	1.1	2	
405	Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data. <i>Results in Physics</i> , 2021 , 21, 103772	3.7	34	
404	Comprehensive study of thermophoretic diffusion deposition velocity effect on heat and mass transfer of ferromagnetic fluid flow along a stretching cylinder. <i>Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</i> , 2021 , 235, 1479-1489	1.5	24	
403	Optimal control approach based on sensitivity analysis to retrench the pine wilt disease. <i>European Physical Journal Plus</i> , 2021 , 136, 1	3.1	1	
402	Incorporating convex incidence rate and public awareness program in modelling drinking abuse and novel control strategies with time delay. <i>Physica Scripta</i> , 2021 , 96, 114006	2.6	2	

401	On solutions of gross domestic product model with different kernels. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 1289-1289	6.1	O
400	On beta-time fractional biological population model with abundant solitary wave structures. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 1996-1996	6.1	15
399	Numerical simulations and analysis for mathematical model of avascular tumor growth using Gompertz growth rate function. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 3731-3740	6.1	3
398	Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 4121-4130	6.1	11
397	Computational analysis of heat and mass transfer in a micropolar fluid flow through a porous medium between permeable channel walls. <i>International Journal of Nonlinear Sciences and Numerical Simulation</i> , 2021 ,	1.8	6
396	Computational analysis of radiative Williamson hybrid nanofluid comprising variable thermal conductivity. <i>Japanese Journal of Applied Physics</i> , 2021 , 60, 087004	1.4	3
395	Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: An optimal case study. <i>Case Studies in Thermal Engineering</i> , 2021 , 26, 101160	5.6	44
394	Computational analysis of Ohmic and viscous dissipation effects on MHD heat transfer flow of Cu-PVA Jeffrey nanofluid through a stretchable surface. <i>Case Studies in Thermal Engineering</i> , 2021 , 26, 101148	5.6	9
393	Solvability for generalized nonlinear two dimensional functional integral equations via measure of noncompactness. <i>Advances in Difference Equations</i> , 2021 , 2021,	3.6	3
392	Von Karman rotating nanofluid flow with modified Fourier law and variable characteristics in liquid and gas scenarios. <i>Scientific Reports</i> , 2021 , 11, 16442	4.9	6
391	Computational frame work of Cattaneo-Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: A thermal case study. <i>Case Studies in Thermal Engineering</i> , 2021 , 26, 101179	5.6	37
390	Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder. <i>Scientific Reports</i> , 2021 , 11, 16494	4.9	13
389	Dynamical behaviour of HIV/AIDS model using Fractional Derivative with Mittag-Leffler Kernel. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 2601-2601	6.1	5
388	A numerical frame work of magnetically driven Powell-Eyring nanofluid using single phase model. <i>Scientific Reports</i> , 2021 , 11, 16500	4.9	18
387	Computational Investigation of the Combined Impact of Nonlinear Radiation and Magnetic Field on Three-Dimensional Rotational Nanofluid Flow across a Stretchy Surface. <i>Processes</i> , 2021 , 9, 1453	2.9	15
386	The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface. <i>Scientific Reports</i> , 2021 , 11, 19239	4.9	8
385	MultiBolitons, lumps, and breath solutions of the water wave propagation with surface tension via four recent computational schemes. <i>Ain Shams Engineering Journal</i> , 2021 , 12, 3031-3041	4.4	6
384	A Note on Existence of Mild Solutions for Second-Order Neutral Integro-Differential Evolution Equations with State-Dependent Delay. <i>Fractal and Fractional</i> , 2021 , 5, 126	3	3

383	A (2+1)-dimensional generalized HirotaBatsumaIto equations: Lie symmetry analysis, invariant solutions and dynamics of soliton solutions. <i>Results in Physics</i> , 2021 , 28, 104621	3.7	11	
382	Comparative Numerical Study of Thermal Features Analysis between Oldroyd-B Copper and Molybdenum Disulfide Nanoparticles in Engine-Oil-Based Nanofluids Flow. <i>Coatings</i> , 2021 , 11, 1196	2.9	10	
381	Influence of fractional time order on W-shaped and Modulation Instability gain in fractional Nonlinear Schrdinger Equation. <i>Results in Physics</i> , 2021 , 28, 104556	3.7	1	
380	Entropy generation analysis of tangent hyperbolic fluid in quadratic Boussinesq approximation using spectral quasi-linearization method. <i>Applied Mathematics and Mechanics (English Edition)</i> , 2021 , 42, 1525-1542	3.2	6	
379	Intelligent Computing with Levenberg-Marquardt Backpropagation Neural Networks for Third-Grade Nanofluid Over a Stretched Sheet with Convective Conditions. <i>Arabian Journal for Science and Engineering</i> , 2021 , 1-19	2.5	7	
378	A collocation approach for multiterm variable-order fractional delay-differential equations using shifted Chebyshev polynomials. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 3511-3511	6.1	2	
377	Role of Cattaneo-Christov heat flux in an MHD Micropolar dusty nanofluid flow with zero mass flux condition. <i>Scientific Reports</i> , 2021 , 11, 19528	4.9	8	
376	Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application. <i>Journal of Materials Research and Technology</i> , 2021 , 14, 985-1006	5.5	61	
375	Thermal growth in solar water pump using Prandtl-Eyring hybrid nanofluid: a solar energy application. <i>Scientific Reports</i> , 2021 , 11, 18704	4.9	26	
374	Supervised neural networks learning algorithm for three dimensional hybrid nanofluid flow with radiative heat and mass fluxes. <i>Ain Shams Engineering Journal</i> , 2021 , 13, 101573-101573	4.4	8	
373	Variety interaction between k-lump and k-kink solutions for the generalized Burgers equation with variable coefficients by bilinear analysis. <i>Results in Physics</i> , 2021 , 28, 104490	3.7	5	
372	Recursion formulas for certain quadruple hypergeometric functions. <i>Advances in Difference Equations</i> , 2021 , 2021,	3.6	1	
371	Performance estimation of 100 GB/s hybrid SACOCDMA-FSO-MDM system under atmospheric turbulences. <i>Optical and Quantum Electronics</i> , 2021 , 53, 1	2.4	2	
370	Generating functions involving the incomplete H-functions. Analysis (Germany), 2021,	0.4	1	
369	Heat transfer enhancement through nanofluids with applications in automobile radiator. <i>Case Studies in Thermal Engineering</i> , 2021 , 27, 101192	5.6	8	
368	Irreversibility process characteristics of variant viscosity and conductivity on hybrid nanofluid flow through Poiseuille microchannel: A special case study. <i>Case Studies in Thermal Engineering</i> , 2021 , 27, 10	1537	5	
367	Clustering of COVID-19 data for knowledge discovery using c-means and fuzzy c-means. <i>Results in Physics</i> , 2021 , 29, 104639	3.7	4	
366	Thermal examination of renewable solar energy in parabolic trough solar collector utilizing Maxwell nanofluid: A noble case study. <i>Case Studies in Thermal Engineering</i> , 2021 , 27, 101258	5.6	32	

365	Intelligent computing Levenberg Marquardt approach for entropy optimized single-phase comparative study of second grade nanofluidic system. <i>International Communications in Heat and Mass Transfer</i> , 2021 , 127, 105544	5.8	25
364	Exploring the dynamics of a tumor-immune interplay with time delay. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 4875-4888	6.1	8
363	On hybrid nanofluid Yamada-Ota and Xue flow models in a rotating channel with modified Fourier law. <i>Scientific Reports</i> , 2021 , 11, 19590	4.9	1
362	Computational case study on tangent hyperbolic hybrid nanofluid flow: Single phase thermal investigation. <i>Case Studies in Thermal Engineering</i> , 2021 , 27, 101246	5.6	14
361	Features of entropy optimization on viscous second grade nanofluid streamed with thermal radiation: A Tiwari and Das model. <i>Case Studies in Thermal Engineering</i> , 2021 , 27, 101291	5.6	15
360	New lump and interaction soliton, N-soliton solutions and the LSP for the (3´+´1)-D potential-YTSF-like equation. <i>Results in Physics</i> , 2021 , 29, 104713	3.7	3
359	Features of Cu and TiO in the flow of engine oil subject to thermal jump conditions. <i>Scientific Reports</i> , 2021 , 11, 19592	4.9	7
358	Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type. <i>Chaos, Solitons and Fractals</i> , 2021 , 151, 111264	9.3	27
357	Hybrid evolutionary padlapproximation approach for numerical treatment of nonlinear partial differential equations. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 4411-4421	6.1	6
356	Different analytical approaches for finding novel optical solitons with generalized third-order nonlinear Schrdinger equation. <i>Results in Physics</i> , 2021 , 29, 104755	3.7	4
355	A computational study of two-dimensional reaction diffusion Brusselator system with applications in chemical processes. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 4381-4392	6.1	4
354	On the Landau-Lifshitz-Bloch equation with spin torque effects. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 4433-4439	6.1	
353	Insight into the dynamics of transient blood conveying gold nanoparticles when entropy generation and Lorentz force are significant. <i>International Communications in Heat and Mass Transfer</i> , 2021 , 127, 105415	5.8	8
352	Galerkin finite element analysis of Darcy B rinkman E orchheimer natural convective flow in conical annular enclosure with discrete heat sources. <i>Energy Reports</i> , 2021 , 7, 6172-6181	4.6	7
351	MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 5473-5483	6.1	9
350	A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1. <i>Mathematics and Computers in Simulation</i> , 2021 , 190, 1003-1026	3.3	23
349	Existence and total controllability results of fuzzy delay differential equation with non-instantaneous impulses. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 6001-6012	6.1	5
348	Proposing novel IIIIshaped fin to boost the melting performance of a vertical PCM enclosure. <i>Case Studies in Thermal Engineering</i> , 2021 , 28, 101465	5.6	5

347	Fractional order heroin epidemic dynamics. AEJ - Alexandria Engineering Journal, 2021, 60, 5157-5165	6.1	6
346	Numerical investigations of stochastic HIV/AIDS infection model. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 5341-5363	6.1	3
345	New approximate-analytical solutions to partial differential equations via auxiliary function method. <i>Partial Differential Equations in Applied Mathematics</i> , 2021 , 4, 100045	0.8	9
344	A novel case study of thermal and streamline analysis in a grooved enclosure filled with (AgMgO/Water) hybrid nanofluid: Galerkin FEM. <i>Case Studies in Thermal Engineering</i> , 2021 , 28, 101372	5.6	19
343	Numerical treatment of 2D-Magneto double-diffusive convection flow of a Maxwell nanofluid: Heat transport case study. <i>Case Studies in Thermal Engineering</i> , 2021 , 28, 101383	5.6	5
342	Some generalized fractional integral inequalities with nonsingular function as a kernel. <i>AIMS Mathematics</i> , 2021 , 6, 3352-3377	2.2	2
341	On 2-variable \$ q \$-Hermite polynomials. AIMS Mathematics, 2021, 6, 8705-8727	2.2	1
340	On the weighted fractional integral inequalities for Chebyshev functionals. <i>Advances in Difference Equations</i> , 2021 , 2021,	3.6	9
339	An efficient numerical scheme based on Lucas polynomials for the study of multidimensional Burgers-type equations. <i>Advances in Difference Equations</i> , 2021 , 2021,	3.6	8
338	Analysis of Silver Nanoparticles in Engine Oil: Atangana B aleanu Fractional Model. <i>Computers, Materials and Continua</i> , 2021 , 67, 2915-2932	3.9	2
337	Dynamical significance of generalized fractional integral inequalities via convexity. <i>AIMS Mathematics</i> , 2021 , 6, 9705-9730	2.2	3
336	Chebyshev type inequality containing a fractional integral operator with a multi-index Mittag-Leffler function as a kernel. <i>Analysis (Germany)</i> , 2021 , 41, 61-67	0.4	2
335	Some newly explored exact solitary wave solutions to nonlinear inhomogeneous Murnaghan rod equation of fractional order. <i>Journal of Taibah University for Science</i> , 2021 , 15, 97-110	3	6
334	A basic study of a fractional integral operator with extended Mittag-Leffler kernel. <i>AIMS Mathematics</i> , 2021 , 6, 12757-12770	2.2	1
333	Couette flow of viscoelastic dusty fluid in a rotating frame along with the heat transfer. <i>Scientific Reports</i> , 2021 , 11, 506	4.9	5
332	MHD Hybrid Nanofluid Flow Due to Rotating Disk with Heat Absorption and Thermal Slip Effects: An Application of Intelligent Computing. <i>Coatings</i> , 2021 , 11, 1554	2.9	7
331	Entropy Optimized Second Grade Fluid with MHD and Marangoni Convection Impacts: An Intelligent Neuro-Computing Paradigm. <i>Coatings</i> , 2021 , 11, 1492	2.9	9
330	Influence of entropy on Brinkman-Forchheimer model of MHD hybrid nanofluid flowing in enclosure containing rotating cylinder and undulating porous stratum <i>Scientific Reports</i> , 2021 , 11, 243	1 6 .9	4

329	Some Double Generalized Weighted Fractional Integral Inequalities Associated with Monotone Chebyshev Functionals. <i>Fractal and Fractional</i> , 2021 , 5, 275	3	1
328	Numerical solution of Catteno-Christov heat flux model over stretching/shrinking hybrid nanofluid by new iterative method. <i>Case Studies in Thermal Engineering</i> , 2021 , 28, 101673	5.6	3
327	A brief comparative examination of tangent hyperbolic hybrid nanofluid through a extending surface: numerical Keller-Box scheme <i>Scientific Reports</i> , 2021 , 11, 24032	4.9	8
326	Unified Framework of Approximating and Interpolatory Subdivision Schemes for Construction of Class of Binary Subdivision Schemes. <i>Journal of Function Spaces</i> , 2020 , 2020, 1-12	0.8	2
325	An advanced version of a conformable mathematical model of Ebola virus disease in Africa. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 3261-3268	6.1	9
324	Results on approximate controllability of Sobolev type fractional stochastic evolution hemivariational inequalities. <i>Numerical Methods for Partial Differential Equations</i> , 2020 ,	2.5	8
323	Analytical Solution of System of Volterra Integral Equations Using OHAM. <i>Journal of Mathematics</i> , 2020 , 2020, 1-9	1.2	4
322	Results on approximate controllability of neutral integro-differential stochastic system with state-dependent delay. <i>Numerical Methods for Partial Differential Equations</i> , 2020 ,	2.5	8
321	Thermal instability of magnetohydrodynamic couple stress nanofluid in rotating porous medium. <i>Numerical Methods for Partial Differential Equations</i> , 2020 ,	2.5	3
320	Finite element method visualization about heat transfer analysis of Newtonian material in triangular cavity with square cylinder. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 4904-4918	5.5	17
319	USE OF ATANGANA B ALEANU FRACTIONAL DERIVATIVE IN HELICAL FLOW OF A CIRCULAR PIPE. <i>Fractals</i> , 2020 , 28, 2040049	3.2	7
318	Impacts of Freezing Temperature Based Thermal Conductivity on the Heat Transfer Gradient in Nanofluids: Applications for a Curved Riga Surface. <i>Molecules</i> , 2020 , 25,	4.8	6
317	A New Dynamic Scheme via Fractional Operators on Time Scale. Frontiers in Physics, 2020, 8,	3.9	6
316	Numerical simulation for bioconvection effects on MHD flow of Oldroyd-B nanofluids in a rotating frame stretching horizontally. <i>Mathematics and Computers in Simulation</i> , 2020 , 178, 166-182	3.3	19
315	Generalized 5-Point Approximating Subdivision Scheme of Varying Arity. <i>Mathematics</i> , 2020 , 8, 474	2.3	8
314	THE ROLE OF FOX-H FUNCTION IN ANALYTIC AND FRACTIONAL MODELING OF HELICITY OF CYLINDER: FRACTIONAL GENERALIZED BURGER FLUID. <i>Fractals</i> , 2020 , 28, 2040050	3.2	4
313	Novel exact solutions of the fractional Bogoyavlensky Konopelchenko equation involving the Atangana-Baleanu-Riemann derivative. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 2957-2967	6.1	36
312	New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. AEJ - Alexandria Engineering Journal, 2020 , 59, 2891-2899	6.1	60

311	Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation. <i>Symmetry</i> , 2020 , 12, 691	2.7	7
310	Natural convection flow of a second grade fluid in an infinite vertical cylinder. <i>Scientific Reports</i> , 2020 , 10, 8327	4.9	6
309	Solutions to fractional neutral delay differential nonlocal systems. <i>Chaos, Solitons and Fractals</i> , 2020 , 138, 109912	9.3	38
308	Multiple Fractional Solutions for Magnetic Bio-Nanofluid Using Oldroyd-B Model in a Porous Medium with Ramped Wall Heating and Variable Velocity. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 3886	2.6	18
307	Gain-Scheduled Observer-Based Finite-Time Control Algorithm for an Automated Closed-Loop Insulin Delivery System. <i>IEEE Access</i> , 2020 , 8, 103088-103099	3.5	3
306	Chirped solitons in discrete electrical transmission line. <i>Results in Physics</i> , 2020 , 18, 103188	3.7	26
305	MHD flow of a generalized Casson fluid with Newtonian heating: A fractional model with Mittag[leffler memory. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 3049-3059	6.1	24
304	An Efficient Analytical Technique for Time-Fractional Parabolic Partial Differential Equations. <i>Frontiers in Physics</i> , 2020 , 8,	3.9	2
303	Some Effective Numerical Techniques for Chaotic Systems Involving Fractal-Fractional Derivatives With Different Laws. <i>Frontiers in Physics</i> , 2020 , 8,	3.9	14
302	On the Solutions of a Class of Integral Equations Pertaining to Incomplete H-Function and Incomplete H-Function. <i>Mathematics</i> , 2020 , 8, 819	2.3	8
301	Periodic Solutions of Some Classes of One Dimensional Non-autonomous Equation. <i>Frontiers in Physics</i> , 2020 , 8,	3.9	5
300	Fractional Brinkman type fluid in channel under the effect of MHD with Caputo-Fabrizio fractional derivative. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 2901-2910	6.1	12
299	Assessment of pseudo-plastic and dilatant materials flow in channel driven cavity: application of metallurgical processes. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 3829-3837	5.5	10
298	Jaya optimization algorithm for transient response and stability enhancement of a fractional-order PID based automatic voltage regulator system. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 2429-244	6.1	38
297	Analysis of EyringPowell Fluid Flow Used as a Coating Material for Wire with Variable Viscosity Effect along with Thermal Radiation and Joule Heating. <i>Crystals</i> , 2020 , 10, 168	2.3	13
296	Numerical modeling and theoretical analysis of a nonlinear advection-reaction epidemic system. <i>Computer Methods and Programs in Biomedicine</i> , 2020 , 193, 105429	6.9	12
295	Analysis of Geometric Properties of Ternary Four-Point Rational Interpolating Subdivision Scheme. <i>Mathematics</i> , 2020 , 8, 338	2.3	8
294	Dual Solutions and Stability Analysis of Magnetized Hybrid Nanofluid with Joule Heating and Multiple Slip Conditions. <i>Processes</i> , 2020 , 8, 332	2.9	23

293	A Time Fractional Model With Non-Singular Kernel the Generalized Couette Flow of Couple Stress Nanofluid. <i>IEEE Access</i> , 2020 , 8, 77378-77395	3.5	10
292	Analytical Solution of UCM Viscoelastic Liquid with Slip Condition and Heat Flux over Stretching Sheet: The Galerkin Approach. <i>Mathematical Problems in Engineering</i> , 2020 , 2020, 1-7	1.1	5
291	Mathematical Analysis of Entropy Generation in the Flow of Viscoelastic Nanofluid through an Annular Region of Two Asymmetric Annuli Having Flexible Surfaces. <i>Coatings</i> , 2020 , 10, 213	2.9	23
290	A Novel Numerical Algorithm to Estimate the Subdivision Depth of Binary Subdivision Schemes. <i>Symmetry</i> , 2020 , 12, 66	2.7	8
289	Structure preserving algorithms for mathematical model of auto-catalytic glycolysis chemical reaction and numerical simulations. <i>European Physical Journal Plus</i> , 2020 , 135, 1	3.1	4
288	Thermal Transport Investigation in Magneto-Radiative GO-MoS/HO-CHO Hybrid Nanofluid Subject to Cattaneo-Christov Model. <i>Molecules</i> , 2020 , 25,	4.8	12
287	Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids. <i>Materials</i> , 2020 , 13,	3.5	9
286	Computational Study of the Coupled Mechanism of Thermophoretic Transportation and Mixed Convection Flow around the Surface of a Sphere. <i>Molecules</i> , 2020 , 25,	4.8	12
285	Mixed Convection in MHD Water-Based Molybdenum Disulfide-Graphene Oxide Hybrid Nanofluid through an Upright Cylinder with Shape Factor. <i>Water (Switzerland)</i> , 2020 , 12, 1723	3	16
284	On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions. <i>Chaos, Solitons and Fractals</i> , 2020 , 139, 110012	9.3	48
283	An efficient numerical approach for space fractional partial differential equations. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 2911-2919	6.1	5
282	Impact of Magnetohydrodynamics on Stagnation Point Slip Flow due to Nonlinearly Propagating Sheet with Nonuniform Thermal Reservoir. <i>Mathematical Problems in Engineering</i> , 2020 , 2020, 1-10	1.1	2
281	Lie Symmetry Analysis, Explicit Solutions and Conservation Laws of a Spatially Two-Dimensional Burgers Huxley Equation. <i>Symmetry</i> , 2020 , 12, 170	2.7	19
280	Enhanced Heat Transfer in Moderately Ionized Liquid Due to Hybrid MoS2/SiO2 Nanofluids Exposed by Nonlinear Radiation: Stability Analysis. <i>Crystals</i> , 2020 , 10, 142	2.3	19
279	Bounds of Generalized Proportional Fractional Integrals in General Form via Convex Functions and Their Applications. <i>Mathematics</i> , 2020 , 8, 113	2.3	20
278	Certain Fractional Proportional Integral Inequalities via Convex Functions. <i>Mathematics</i> , 2020 , 8, 222	2.3	14
277	Numerical Analysis of Fluid Forces for Flow Past a Square Rod with Detached Dual Control Rods at Various Gap Spacing. <i>Symmetry</i> , 2020 , 12, 159	2.7	2
276	CFD analysis for characterization of non-linear power law material in a channel driven cavity with a square cylinder by measuring variation in drag and lift forces. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 3838-3846	5.5	12

275	Impact of Nonlinear Thermal Radiation on the Time-Dependent Flow of Non-Newtonian Nanoliquid over a Permeable Shrinking Surface. <i>Symmetry</i> , 2020 , 12, 195	2.7	2	
274	Certain fractional calculus and integral transform results of incomplete ?-functions with applications. <i>Mathematical Methods in the Applied Sciences</i> , 2020 , 43, 5602-5614	2.3	13	
273	Computational and Physical Examination About the Aspects of Fluid Flow Between Two Coaxially Rotated Disks by Capitalizing Non-fourier Heat Flux Theory: Finite Difference Approach. <i>Frontiers in Physics</i> , 2020 , 7,	3.9	11	
272	An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-cells with the effect of antiviral drug therapy. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 2053-2064	6.1	62	
271	Numerical Analysis of the Susceptible Exposed Infected Quarantined and Vaccinated (SEIQV) Reaction-Diffusion Epidemic Model. <i>Frontiers in Physics</i> , 2020 , 7,	3.9	8	
270	Stability Analysis and Dual Solutions of Micropolar Nanofluid over the Inclined Stretching/Shrinking Surface with Convective Boundary Condition. <i>Symmetry</i> , 2020 , 12, 74	2.7	25	
269	A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force. <i>Mathematical Methods in the Applied Sciences</i> , 2020 , 43, 4460	2.3	84	
268	On the CattaneoII hristov Heat Flux Model and OHAM Analysis for Three Different Types of Nanofluids. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 886	2.6	25	
267	A numerical efficient splitting method for the solution of two dimensional susceptible infected recovered epidemic model of whooping cough dynamics: Applications in bio-medical engineering. <i>Computer Methods and Programs in Biomedicine</i> , 2020 , 190, 105350	6.9	8	•
266	Tempered Fractional Integral Inequalities for Convex Functions. <i>Mathematics</i> , 2020 , 8, 500	2.3	7	
265	Certain Hadamard Proportional Fractional Integral Inequalities. <i>Mathematics</i> , 2020 , 8, 504	2.3	10	
264	Entropy Generation and Consequences of MHD in DarcyHorchheimer Nanofluid Flow Bounded by Non-Linearly Stretching Surface. <i>Symmetry</i> , 2020 , 12, 652	2.7	50	
263	Numerical Simulation of Drag Reduction on a Square Rod Detached with Two Control Rods at Various Gap Spacing via Lattice Boltzmann Method. <i>Symmetry</i> , 2020 , 12, 475	2.7	4	
262	Generalized Mittag-Leffler Type Function: Fractional Integrations and Application to Fractional Kinetic Equations. <i>Frontiers in Physics</i> , 2020 , 8,	3.9	7	
261	A Novel Hybrid Model for CuAl2O3/H2O Nanofluid Flow and Heat Transfer in Convergent/Divergent Channels. <i>Energies</i> , 2020 , 13, 1686	3.1	10	
260	ENanofluid Thermal Transport between Parallel Plates Suspended by Micro-Cantilever Sensor by Incorporating the Effective Prandtl Model: Applications to Biological and Medical Sciences. <i>Molecules</i> , 2020 , 25,	4.8	9	
259	Shape-Preservation of the Four-Point Ternary Interpolating Non-stationary Subdivision Scheme. <i>Frontiers in Physics</i> , 2020 , 7,	3.9	8	
258	Radiative Colloidal Investigation for Thermal Transport by Incorporating the Impacts of Nanomaterial and Molecular Diameters (d, d): Applications in Multiple Engineering Systems. <i>Molecules</i> , 2020 , 25,	4.8	6	

257	Symmetric MHD Channel Flow of Nonlocal Fractional Model of BTF Containing Hybrid Nanoparticles. <i>Symmetry</i> , 2020 , 12, 663	2.7	17
256	Certain Gr\(\text{S}\)s-type inequalities via tempered fractional integrals concerning another function. Journal of Inequalities and Applications, 2020 , 2020,	2.1	5
255	New generalized reverse Minkowski and related integral inequalities involving generalized fractional conformable integrals. <i>Journal of Inequalities and Applications</i> , 2020 , 2020,	2.1	4
254	Lupalblending functions with shifted knots and q-BZier curves. <i>Journal of Inequalities and Applications</i> , 2020 , 2020,	2.1	3
253	Certain mean-type fractional integral inequalities via different convexities with applications. Journal of Inequalities and Applications, 2020 , 2020,	2.1	7
252	Construction of new cubic Bzier-like triangular patches with application in scattered data interpolation. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	8
251	Fractional calculus operators with Appell function kernels applied to Srivastava polynomials and extended Mittag-Leffler function. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	8
250	Further extension of Voigt function and its properties. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	1
249	A subdivision-based approach for singularly perturbed boundary value problem. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	3
248	A novel analytical technique to obtain the solitary solutions for nonlinear evolution equation of fractional order. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	19
247	Abundant solitary wave solutions to an extended nonlinear Schrdingerd equation with conformable derivative using an efficient integration method. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	60
246	On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	38
245	New quantum estimates in the setting of fractional calculus theory. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	10
244	Existence of solutions of non-autonomous fractional differential equations with integral impulse condition. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	33
243	An extension of Darboll fixed point theorem for a class of system of nonlinear integral equations. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	4
242	Some subordination involving polynomials induced by lower triangular matrices. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	1
241	Multidimensional fixed points in generalized distance spaces. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	3
240	On the weighted fractional PlyaBzegland Chebyshev-types integral inequalities concerning another function. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	10

239	Hilbert-type inequalities for time scale nabla calculus. Advances in Difference Equations, 2020, 2020,	3.6	7
238	Solution of fractional kinetic equations involving class of functions and Sumudu transform. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	6
237	Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	14
236	Calculation of focal values for first-order non-autonomous equation with algebraic and trigonometric coefficients. <i>Open Physics</i> , 2020 , 18, 738-750	1.3	1
235	Unsteady nano-bioconvective channel flow with effect of nth order chemical reaction. <i>Open Physics</i> , 2020 , 18, 1011-1024	1.3	4
234	Influence of interfacial electrokinetic on MHD radiative nanofluid flow in a permeable microchannel with Brownian motion and thermophoresis effects. <i>Open Physics</i> , 2020 , 18, 726-737	1.3	4
233	A note on (p, q)-analogue type of Fubini numbers and polynomials. <i>AIMS Mathematics</i> , 2020 , 5, 2743-27	′5 7 .2	6
232	Quasi-monomiality and convergence theorem for the Boas-Buck-Sheffer polynomials. <i>AIMS Mathematics</i> , 2020 , 5, 4432-4443	2.2	2
231	Fractional calculus of a product of multivariable Srivastava polynomial and multi-index Bessel function in the kernel F3. <i>AIMS Mathematics</i> , 2020 , 5, 1462-1475	2.2	1
230	New generalized PlyaBzegland abyav type inequalities with general kernel and measure. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	1
229	Standard routine techniques of modeling of tick-borne encephalitis. <i>Open Physics</i> , 2020 , 18, 820-828	1.3	
228	Analysis of Fractional-Order Model of COVID-19 Pandemics With a Nonlinear Incidence Rate. <i>Innovative Biosystems and Bioengineering</i> , 2020 , 4, 160-167	0.7	1
227	The Marichev-Saigo-Maeda Fractional Calculus Operators Pertaining to the Generalized K-Struve Function. <i>Applied Mathematics and Nonlinear Sciences</i> , 2020 , 5, 593-602	4	11
226	A Structure Preserving Numerical Method for Solution of Stochastic Epidemic Model of Smoking Dynamics. <i>Computers, Materials and Continua</i> , 2020 , 65, 263-278	3.9	5
225	Mathematical Analysis of Novel Coronavirus (2019-nCov) Delay Pandemic Model. <i>Computers, Materials and Continua</i> , 2020 , 64, 1401-1414	3.9	21
224	Heat Transfer in MHD Flow of Maxwell Fluid via Fractional Cattaneo-Friedrich Model: A Finite Difference Approach. <i>Computers, Materials and Continua</i> , 2020 , 65, 1959-1973	3.9	20
223	Computational Analysis of the Effect of Nano Particle Material Motion on Mixed Convection Flow in the Presence of Heat Generation and Absorption. <i>Computers, Materials and Continua</i> , 2020 , 65, 1809-18	32 ³⁹	8
222	Computational Analysis of the Oscillatory Mixed Convection Flow along a Horizontal Circular Cylinder in Thermally Stratified Medium. <i>Computers, Materials and Continua</i> , 2020 , 65, 109-123	3.9	5

221	A New Idea of Fractal-fractional Derivative with Power Law Kernel for Free Convection Heat Transfer in a Channel Flow between Two Static Upright Parallel Plates. <i>Computers, Materials and Continua</i> , 2020 , 65, 1237-1251	3.9	8
220	Analysis and Dynamics of Illicit Drug Use Described by Fractional Derivative with Mittag-Leffler Kernel. <i>Computers, Materials and Continua</i> , 2020 , 65, 1905-1924	3.9	5
219	Exact Analysis of Non-Linear Fractionalized Jeffrey Fluid. A Novel Approach of Atangana-Baleanu Fractional Model. <i>Computers, Materials and Continua</i> , 2020 , 65, 2033-2047	3.9	5
218	Comparative Thermal Performance in SiO2-H2O and (MoS2-SiO2)-H2O over a Curved Stretching Semi-Infinite Region: A Numerical Investigation. <i>Computers, Materials and Continua</i> , 2020 , 66, 947-960	3.9	2
217	Heat Transfer Effect on Viscoelastic Fluid Used as a Coating Material for Wire with Variable Viscosity. <i>Coatings</i> , 2020 , 10, 163	2.9	5
216	Construction of Cubic Timmer Triangular Patches and its Application in Scattered Data Interpolation. <i>Mathematics</i> , 2020 , 8, 159	2.3	9
215	Hydromagnetic Flow of Micropolar Nanofluid. Symmetry, 2020 , 12, 251	2.7	6
214	Magnetized Flow of Cu + Al2O3 + H2O Hybrid Nanofluid in Porous Medium: Analysis of Duality and Stability. <i>Symmetry</i> , 2020 , 12, 1513	2.7	17
213	Certain generalized fractional integral inequalities. AIMS Mathematics, 2020, 5, 1588-1602	2.2	8
212	On generalized \$mathtt{k}\$-fractional derivative operator. <i>AIMS Mathematics</i> , 2020 , 5, 1936-1945	2.2	12
211	Numerical solutions of 2D Fredholm integral equation of first kind by discretization technique. <i>AIMS Mathematics</i> , 2020 , 5, 2295-2306	2.2	2
210	A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow. <i>AIMS Mathematics</i> , 2020 , 5, 3035-3055	2.2	35
209	Positivity preserving interpolation by using rational quartic spline. AIMS Mathematics, 2020, 5, 3762-378	8 2 .2	5
208	Construction of partially degenerate Laguerre-Genocchi polynomials with their applications. <i>AIMS Mathematics</i> , 2020 , 5, 4399-4411	2.2	5
207	Integral transforms of an extended generalized multi-index Bessel function. <i>AIMS Mathematics</i> , 2020 , 5, 7531-7546	2.2	7
206	Some new results for the Srivastava-Luo-Raina mathbb{M}-transform pertaining to the incomplete H-functions. <i>AIMS Mathematics</i> , 2020 , 5, 717-722	2.2	4
205	Medical Image Zooming by Using Rational Bicubic Ball Function. <i>Advances in Computational Intelligence and Robotics Book Series</i> , 2020 , 146-161	0.4	
204	A new approach to interval-valued inequalities. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	2

203	Analytical properties of the Hurwitz[lerch zeta function. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	2
202	The New Mittag-Leffler Function and Its Applications. <i>Journal of Mathematics</i> , 2020 , 2020, 1-8	1.2	2
201	On the metric basis in wheels with consecutive missing spokes. AIMS Mathematics, 2020, 5, 6221-6232	2.2	
200	New approach to approximate the solution for the system of fractional order Volterra integro-differential equations. <i>Results in Physics</i> , 2020 , 19, 103453	3.7	12
199	A Report On Fluctuating Free Convection Flow Of Heat Absorbing Viscoelastic Dusty Fluid Past In A Horizontal Channel With MHD Effect. <i>Scientific Reports</i> , 2020 , 10, 8523	4.9	8
198	Dual similarity solutions of MHD stagnation point flow of Casson fluid with effect of thermal radiation and viscous dissipation: stability analysis. <i>Scientific Reports</i> , 2020 , 10, 15405	4.9	24
197	Insights into the Stability of Mixed Convective Darcyfforchheimer Flows of Cross Liquids from a Vertical Plate with Consideration of the Significant Impact of Velocity and Thermal Slip Conditions. <i>Mathematics</i> , 2020 , 8, 31	2.3	5
196	Time fractional analysis of electro-osmotic flow of WaltersB-B fluid with time-dependent temperature and concentration. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 25-38	6.1	15
195	Fractional modified Kawahara equation with Mittag[leffler law. <i>Chaos, Solitons and Fractals</i> , 2020 , 131, 109508	9.3	45
194	A new model of fractional Casson fluid based on generalized Fick and Fourier laws together with heat and mass transfer. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 2865-2876	6.1	42
193	Activation energy on MHD flow of titanium alloy (Ti6Al4V) nanoparticle along with a cross flow and streamwise direction with binary chemical reaction and non-linear radiation: Dual Solutions. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 188-199	5.5	53
192	Some inequalities of the GrBs type for conformable ({varvec{k}})-fractional integral operators. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2020 , 114, 1	1.6	16
191	Stability analysis and multiple solution of CuAl2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 421-432	5.5	69
190	A novel study of radiative flow involving micropolar nanoliquid from a shrinking/stretching curved surface including blood gold nanoparticles. <i>European Physical Journal Plus</i> , 2020 , 135, 1	3.1	11
189	Structure Preserving Numerical Analysis of HIV and CD4+T-Cells Reaction Diffusion Model in Two Space Dimensions. <i>Chaos, Solitons and Fractals</i> , 2020 , 139, 110307	9.3	9
188	An Extension of the Mittag-Leffler Function and Its Associated Properties. <i>Advances in Mathematical Physics</i> , 2020 , 2020, 1-8	1.1	3
187	Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol-Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux. <i>Frontiers in Chemistry</i> , 2020 ,	5	15
186	Lie similarity analysis of MHD flow past a stretching surface embedded in porous medium along with imposed heat source/sink and variable viscosity. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 10045-10053	5.5	19

185	Certain Image Formulae and Fractional Kinetic Equations of Generalized (mathtt {k})-Bessel Functions via the Sumudu Transform. <i>International Journal of Applied and Computational Mathematics</i> , 2020 , 6, 1	1.3	1
184	Estimation of Integral Inequalities Using the Generalized Fractional Derivative Operator in the Hilfer Sense. <i>Journal of Mathematics</i> , 2020 , 2020, 1-15	1.2	5
183	Inequalities of Hardy Type via Superquadratic Functions with General Kernels and Measures for Several Variables on Time Scales. <i>Journal of Function Spaces</i> , 2020 , 2020, 1-15	0.8	4
182	Lie analysis, conservation laws and travelling wave structures of nonlinear BogoyavlenskiiRadomtsevPetviashvili equation. <i>Results in Physics</i> , 2020 , 19, 103492	3.7	20
181	Emphasis on unsteady dynamics of bioconvective hybrid nanofluid flow over an upwardlownward moving rotating disk. <i>Numerical Methods for Partial Differential Equations</i> , 2020 ,	2.5	34
180	A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control. <i>Advances in Difference Equations</i> , 2020 , 2020, 373	3.6	72
179	Existence and uniqueness of solutions for fractional nonlinear hybrid impulsive system. <i>Numerical Methods for Partial Differential Equations</i> , 2020 ,	2.5	3
178	Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel. <i>Numerical Methods for Partial Differential Equations</i> , 2020 ,	2.5	15
177	Some New Tempered Fractional Plya-Szegland Chebyshev-Type Inequalities with Respect to Another Function. <i>Journal of Mathematics</i> , 2020 , 2020, 1-14	1.2	4
176	Hadamard-Type k -Fractional Integral Inequalities for Exponentially 🖟 h 🗈 -Convex Functions. <i>Journal of Mathematics</i> , 2020 , 2020, 1-17	1.2	O
175	Trapezium-Type Inequalities for k -Fractional Integral via New Exponential-Type Convexity and Their Applications. <i>Journal of Mathematics</i> , 2020 , 2020, 1-12	1.2	4
174	Exploration of Aluminum and Titanium Alloys in the Stream-Wise and Secondary Flow Directions Comprising the Significant Impacts of Magnetohydrodynamic and Hybrid Nanofluid. <i>Crystals</i> , 2020 , 10, 679	2.3	6
173	Augmentation of mixed convection heat transfer in a lid-assisted square enclosure utilizing micropolar fluid under magnetic environment: A numerical approach. <i>Results in Physics</i> , 2020 , 18, 10324	1 <i>3</i> .7	9
172	Existence of solutions for some functional integrodifferential equations with nonlocal conditions. <i>Mathematical Methods in the Applied Sciences</i> , 2020 , 43, 10319-10331	2.3	48
171	Numerical simulation of simulate an anomalous solute transport model via local meshless method. AEJ - Alexandria Engineering Journal, 2020 , 59, 2827-2838	6.1	29
170	On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory. <i>Journal of Function Spaces</i> , 2020 , 2020, 1-9	0.8	8
169	On the Volterra-Type Fractional Integro-Differential Equations Pertaining to Special Functions. <i>Fractal and Fractional</i> , 2020 , 4, 33	3	1
168	Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme. Mathematics, 2020, 8, 806	2.3	6

167	Influence in a Darcy's medium with heat production and radiation on MHD convection flow via modern fractional approach. <i>Journal of Materials Research and Technology</i> , 2020 , 9, 10016-10030	5.5	11
166	Dynamical behavior of fractional Chen-Lee-Liu equation in optical fibers with beta derivatives. <i>Results in Physics</i> , 2020 , 18, 103208	3.7	14
165	Determining new soliton solutions for a generalized nonlinear evolution equation using an effective analytical method. <i>AEJ - Alexandria Engineering Journal</i> , 2020 , 59, 3171-3179	6.1	11
164	On the (k,s)-Hilfer-Prabhakar Fractional Derivative With Applications to Mathematical Physics. <i>Frontiers in Physics</i> , 2020 , 8,	3.9	13
163	Impact of induced magnetic field on thermal enhancement in gravity driven Fe3O4 ferrofluid flow through vertical non-isothermal surface. <i>Results in Physics</i> , 2020 , 19, 103472	3.7	9
162	Shrinking CesEo means method for the split equilibrium and fixed point problems in Hilbert spaces. <i>Advances in Difference Equations</i> , 2020 , 2020,	3.6	4
161	Some Fractional Operators with the Generalized BesselMaitland Function. <i>Discrete Dynamics in Nature and Society</i> , 2020 , 2020, 1-15	1.1	7
160	On New Modifications Governed by Quantum Hahn Integral Operator Pertaining to Fractional Calculus. <i>Journal of Function Spaces</i> , 2020 , 2020, 1-12	0.8	10
159	Convective Effect on Magnetohydrodynamic (MHD) Stagnation Point Flow of Casson Fluid over a Vertical Exponentially Stretching/Shrinking Surface: Triple Solutions. <i>Symmetry</i> , 2020 , 12, 1238	2.7	12
158	Soliton solutions to the DNA Peyrard B ishop equation with beta-derivative via three distinctive approaches. <i>European Physical Journal Plus</i> , 2020 , 135, 1	3.1	12
157	A Time Fractional Model of Generalized Couette Flow of Couple Stress Nanofluid With Heat and Mass Transfer: Applications in Engine Oil. <i>IEEE Access</i> , 2020 , 8, 146944-146966	3.5	25
156	Results on existence and controllability results for fractional evolution inclusions of order 1 . <i>Numerical Methods for Partial Differential Equations</i> , 2020 ,	2.5	6
155	Dual solutions of nanomaterial flow comprising titanium alloy (TiAlV) suspended in Williamson fluid through a thin moving needle with nonlinear thermal radiation: stability scrutinization. <i>Scientific Reports</i> , 2020 , 10, 20933	4.9	4
154	Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order 1 . <i>Numerical Methods for Partial Differential Equations</i> , 2020 ,	2.5	13
153	A report on COVID-19 epidemic in Pakistan using SEIR fractional model. <i>Scientific Reports</i> , 2020 , 10, 222	. 6β 9	32
152	On the Study of Trigonometric Polynomials Using Strum Sequence. <i>Journal of Mathematics</i> , 2020 , 2020, 1-8	1.2	2
151	Heat transfer analysis in sodium alginate based nanofluid using MoS2 nanoparticles: Atangana B aleanu fractional model. <i>Chaos, Solitons and Fractals</i> , 2020 , 130, 109445	9.3	28
150	Caputo E abrizio fractional derivatives modeling of transient MHD Brinkman nanoliquid: Applications in food technology. <i>Chaos, Solitons and Fractals</i> , 2020 , 131, 109489	9.3	15

149	Higher order B-spline differential quadrature rule to approximate generalized Rosenau-RLW equation. <i>Mathematical Methods in the Applied Sciences</i> , 2020 , 43, 6812-6822	2.3	4
148	Triple Solutions and Stability Analysis of Micropolar Fluid Flow on an Exponentially Shrinking Surface. <i>Crystals</i> , 2020 , 10, 283	2.3	8
147	Some Extensions of the Pochhammer Symbol and the Associated Hypergeometric Functions 2019 , 43, 2601-2606		13
146	Triple Local Similarity Solutions of Darcy-Forchheimer Magnetohydrodynamic (MHD) Flow of Micropolar Nanofluid Over an Exponential Shrinking Surface: Stability Analysis. <i>Coatings</i> , 2019 , 9, 527	2.9	26
145	Some inequalities via fractional conformable integral operators. <i>Journal of Inequalities and Applications</i> , 2019 , 2019,	2.1	24
144	Family of odd point non-stationary subdivision schemes and their applications. <i>Advances in Difference Equations</i> , 2019 , 2019,	3.6	9
143	Analysis of differential equations involving CaputoBabrizio fractional operator and its applications to reaction diffusion equations. <i>Advances in Difference Equations</i> , 2019 , 2019,	3.6	62
142	Computable solution of fractional kinetic equations using Mathieu-type series. <i>Advances in Difference Equations</i> , 2019 , 2019,	3.6	8
141	The Minkowski inequalities via generalized proportional fractional integral operators. <i>Advances in Difference Equations</i> , 2019 , 2019,	3.6	31
140	A new class of 2m-point binary non-stationary subdivision schemes. <i>Advances in Difference Equations</i> , 2019 , 2019,	3.6	9
139	The Solutions of Non-Integer Order Burgers Fluid Flowing through a Round Channel with Semi Analytical Technique. <i>Symmetry</i> , 2019 , 11, 962	2.7	3
138	Transmission dynamics of fractional order Typhoid fever model using Caputo E abrizio operator. <i>Chaos, Solitons and Fractals,</i> 2019 , 128, 355-365	9.3	49
137	Numerical Investigation of Multiple Solutions for Caputo Fractional-Order-Two Dimensional Magnetohydrodynamic Unsteady Flow of Generalized Viscous Fluid over a Shrinking Sheet Using the Adams-Type Predictor-Corrector Method. <i>Coatings</i> , 2019 , 9, 548	2.9	10
136	Numerical Solution of Casson Nanofluid Flow Over a Non-linear Inclined Surface With Soret and Dufour Effects by Keller-Box Method. <i>Frontiers in Physics</i> , 2019 , 7,	3.9	31
135	Pathway fractional integral operators involving (mathtt {k})-Struve function. <i>Afrika Matematika</i> , 2019 , 30, 1267-1274	0.7	4
134	Melting Flow in Wire Coating of a Third Grade Fluid over a Die Using Reynolds' and Vogel's Models with Non-Linear Thermal Radiation and Joule Heating. <i>Materials</i> , 2019 , 12,	3.5	14
133	Entropy Generation in MHD Conjugate Flow with Wall Shear Stress over an Infinite Plate: Exact Analysis. <i>Entropy</i> , 2019 , 21,	2.8	9
132	Unified integrals involving product of multivariable polynomials and generalized Bessel functions. Boletim Da Sociedade Paranaense De Matematica, 2019, 38, 73-83	0.4	3

1	131	Certain Chebyshev-Type Inequalities Involving Fractional Conformable Integral Operators. Mathematics, 2019 , 7, 364	2.3	30	
1	130	Unsteady Free Convection Flow of Casson Nanofluid Over a Nonlinear Stretching Sheet. <i>IEEE Access</i> , 2019 , 7, 93076-93087	3.5	10	
1	129	MHD Slip Flow of Casson Fluid along a Nonlinear Permeable Stretching Cylinder Saturated in a Porous Medium with Chemical Reaction, Viscous Dissipation, and Heat Generation/Absorption. <i>Symmetry</i> , 2019 , 11, 531	2.7	35	
1	128	Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution. <i>Mathematics</i> , 2019 , 7, 248	2.3	12	
1	127	A Study of Generalized Laguerre Poly-Genocchi Polynomials. <i>Mathematics</i> , 2019 , 7, 219	2.3	1	
1	126	MHD Thin Film Flow and Thermal Analysis of Blood with CNTs Nanofluid. <i>Coatings</i> , 2019 , 9, 175	2.9	35	
1	125	Unsteady Nano-Liquid Spray with Thermal Radiation Comprising CNTs. <i>Processes</i> , 2019 , 7, 181	2.9	7	
1	124	Unsteady Flow of Fractional Fluid between Two Parallel Walls with Arbitrary Wall Shear Stress Using Caputo B abrizio Derivative. <i>Symmetry</i> , 2019 , 11, 449	2.7	8	
1	123	Generalized Fractional Integral Operators Pertaining to the Product of Srivastavall Polynomials and Generalized Mathieu Series. <i>Mathematics</i> , 2019 , 7, 206	2.3	3	
1	122	Construction and Application of Nine-Tic B-Spline Tensor Product SS. <i>Mathematics</i> , 2019 , 7, 675	2.3	14	
1	121	Numerical and Analytical Investigation of an Unsteady Thin Film Nanofluid Flow over an Angular Surface. <i>Processes</i> , 2019 , 7, 486	2.9	10	
1	120	Two-Phase Fluctuating Flow of Dusty Viscoelastic Fluid Between Non-Conducting Rigid Plates With Heat Transfer. <i>IEEE Access</i> , 2019 , 7, 123299-123306	3.5	10	
1	119	Atangana B aleanu fractional model for the flow of Jeffrey nanofluid with diffusion-thermo effects: applications in engine oil. <i>Advances in Difference Equations</i> , 2019 , 2019,	3.6	15	
1	118	Effect of the Marangoni Convection in the Unsteady Thin Film Spray of CNT Nanofluids. <i>Processes</i> , 2019 , 7, 392	2.9	7	
1	117	Fractional Model of Couple Stress Fluid for Generalized Couette Flow: A Comparative Analysis of AtanganaBaleanu and CaputoBabrizio Fractional Derivatives. <i>IEEE Access</i> , 2019 , 7, 88643-88655	3.5	16	
1	116	A New Class of 2q-Point Nonstationary Subdivision Schemes and Their Applications. <i>Mathematics</i> , 2019 , 7, 639	2.3	13	
1	115	Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit. <i>Chaos, Solitons and Fractals,</i> 2019 , 129, 40-45	9.3	34	
1	114	Certain fractional kinetic equations involving generalized K-functions. <i>Analysis (Germany)</i> , 2019 , 39, 65-7	6 .4	3	

113	A New Extension of the Pochhammer Symbol and Its Application to Hypergeometric Functions. <i>International Journal of Applied and Computational Mathematics</i> , 2019 , 5, 1	1.3	4
112	Numerical Analysis with Keller-Box Scheme for Stagnation Point Effect on Flow of Micropolar Nanofluid over an Inclined Surface. <i>Symmetry</i> , 2019 , 11, 1379	2.7	7
111	Role of modern fractional derivatives in an armature-controlled DC servomotor. <i>European Physical Journal Plus</i> , 2019 , 134, 1	3.1	23
110	Keller-Box Analysis of Buongiorno Model with Brownian and Thermophoretic Diffusion for Casson Nanofluid over an Inclined Surface. <i>Symmetry</i> , 2019 , 11, 1370	2.7	6
109	A New Extension of the EGauss Hypergeometric Function and Its Associated Properties. <i>Mathematics</i> , 2019 , 7, 996	2.3	5
108	Chebyshev type inequalities via generalized fractional conformable integrals. <i>Journal of Inequalities and Applications</i> , 2019 , 2019,	2.1	25
107	Some fractional proportional integral inequalities. <i>Journal of Inequalities and Applications</i> , 2019 , 2019,	2.1	14
106	Sensitivity analysis for a new class of generalized parametric nonlinear ordered variational inequality problems in ordered Banach spaces. <i>Journal of Inequalities and Applications</i> , 2019 , 2019,	2.1	1
105	Some new inequalities for generalized fractional conformable integral operators. <i>Advances in Difference Equations</i> , 2019 , 2019,	3.6	7
104	Effects of carbon nanotubes on magnetohydrodynamic flow of methanol based nanofluids via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. <i>Thermal Science</i> , 2019 , 23, 883-898	1.2	21
103	MHD Flow and Heat Transfer in Sodium Alginate Fluid with Thermal Radiation and Porosity Effects: Fractional Model of Atangana B aleanu Derivative of Non-Local and Non-Singular Kernel. <i>Symmetry</i> , 2019 , 11, 1295	2.7	9
102	Convexity and inequalities related to extended beta and confluent hypergeometric functions. <i>AIMS Mathematics</i> , 2019 , 4, 1499-1507	2.2	3
101	MHD Flow of Brinkman Type HD-Cu, Ag, TiODand AlDDNanofluids with Chemical Reaction and Heat Generation Effects in a Porous Medium. <i>Journal of Magnetics</i> , 2019 , 24, 262-270	1.9	4
100	Some integral transforms of the generalized k-Mittag-Leffler function. <i>Publications De Lgnstitut Mathematique</i> , 2019 , 106, 125-133	0.2	1
99	Euler type integral operator involving k-Mittag-Leffler function. <i>Boletim Da Sociedade Paranaense De Matematica</i> , 2019 , 38, 165-174	0.4	2
98	Fractional Order Integration and Certain Integrals of Generalized Multiindex Bessel Function. <i>Springer Proceedings in Mathematics and Statistics</i> , 2019 , 155-167	0.2	2
97	Further Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables. <i>Mathematics</i> , 2019 , 7, 48	2.3	2
96	Image Interpolation Using a Rational Bi-Cubic Ball. <i>Mathematics</i> , 2019 , 7, 1045	2.3	18

(2019-2019)

Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in two-dimensional systems. <i>Advances in Difference Equations</i> , 2019 , 2019,	3.6	56	
Extended Rectangular Mrc-Metric Spaces and Fixed Point Results. <i>Mathematics</i> , 2019 , 7, 1136	2.3	4	
Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application. <i>Mathematics</i> , 2019 , 7, 1230	2.3	3	
Numerical Solution of the Boundary Value Problems Arising in Magnetic Fields and Cylindrical Shells. <i>Mathematics</i> , 2019 , 7, 508	2.3	17	
Entropy Generation and Heat Transfer in Drilling Nanoliquids with Clay Nanoparticles. <i>Entropy</i> , 2019 , 21, 1226	2.8	5	
Solutions of fractional kinetic equation and the generalized GaluItype Struve function. <i>Journal of Interdisciplinary Mathematics</i> , 2019 , 22, 1167-1184	1.2	4	
Effect of Viscous Dissipation in Heat Transfer of MHD Flow of Micropolar Fluid Partial Slip Conditions: Dual Solutions and Stability Analysis. <i>Energies</i> , 2019 , 12, 4617	3.1	19	
A New Scheme Using Cubic B-Spline to Solve Non-Linear Differential Equations Arising in Visco-Elastic Flows and Hydrodynamic Stability Problems. <i>Mathematics</i> , 2019 , 7, 1078	2.3	9	
Certain families of integral formulas involving Struve functions. <i>Boletim Da Sociedade Paranaense De Matematica</i> , 2019 , 37, 27-35	0.4	1	
Notes on q-Hermite based unified Apostol type polynomials. <i>Journal of Interdisciplinary Mathematics</i> , 2019 , 22, 1185-1203	1.2	2	
Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface. <i>Processes</i> , 2019 , 7, 926	2.9	9	
Dual Solutions and Stability Analysis of Micropolar Nanofluid Flow with Slip Effect on Stretching/Shrinking Surfaces. <i>Energies</i> , 2019 , 12, 4529	3.1	13	
Brownian Motion and Thermophoretic Diffusion Effects on Micropolar Type Nanofluid Flow with Soret and Dufour Impacts over an Inclined Sheet: Keller-Box Simulations. <i>Energies</i> , 2019 , 12, 4191	3.1	13	
Certain inequalities via generalized proportional Hadamard fractional integral operators. <i>Advances in Difference Equations</i> , 2019 , 2019,	3.6	32	
Mathematical modelling of internal blood pressure involving incomplete H -functions. <i>Journal of Interdisciplinary Mathematics</i> , 2019 , 22, 1213-1221	1.2	2	
Application of incomplete Hfunctions in determination of Lambert law. <i>Journal of Interdisciplinary Mathematics</i> , 2019 , 22, 1205-1212	1.2	5	
Certain Unified Integrals Associated with Product of M-Series and Incomplete H-functions. <i>Mathematics</i> , 2019 , 7, 1191	2.3	9	
Performance evaluation of newly constructed NZCC for SAC-OCDMA using direct detection technique. <i>Photonic Network Communications</i> , 2019 , 37, 75-82	1.7	9	
	Extended Rectangular Mrc-Metric Spaces and Fixed Point Results. Mathematics, 2019, 7, 1136 Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application. Mathematics, 2019, 7, 1230 Numerical Solution of the Boundary Value Problems Arising in Magnetic Fields and Cylindrical Shells. Mathematics, 2019, 7, 508 Entropy Generation and Heat Transfer in Drilling Nanoliquids with Clay Nanoparticles. Entropy, 2019, 21, 1226 Solutions of fractional kinetic equation and the generalized Galuftype Struve function. Journal of Interdisciplinary Mathematics, 2019, 22, 1167-1184 Effect of Viscous Dissipation in Heat Transfer of MHD Flow of Micropolar Fluid Partial Slip Conditions: Dual Solutions and Stability Analysis. Energies, 2019, 12, 4617 A New Scheme Using Cubic B-Spline to Solve Non-Linear Differential Equations Arising in Visco-Elastic Flows and Hydrodynamic Stability Problems. Mathematics, 2019, 7, 1078 Certain families of integral formulas involving Struve functions. Boletim Da Sociedade Paranaense De Matematica, 2019, 37, 27-35 Notes on q-Hermite based unified Apostol type polynomials. Journal of Interdisciplinary Mathematics, 2019, 22, 1185-1203 Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface. Processes, 2019, 7, 926 Dual Solutions and Stability Analysis of Micropolar Nanofluid Flow with Slip Effect on Stretching/Shrinking Surfaces. Energies, 2019, 12, 4529 Brownian Motion and Thermophoretic Diffusione Effects on Micropolar Type Nanofluid Flow with Soret and Dufour Impacts over an Inclined Sheet: Keller-Box Simulations. Energies, 2019, 12, 4191 Certain inequalities via generalized proportional Hadamard fractional integral operators. Advances in Difference Equations, 2019, 2019, 22, 1213-1221 Application of incomplete Hünctions in determination of Lambert® law. Journal of Interdisciplinary Mathematics, 2019, 22, 1213-1221 Certain Unified Integrals Associated with Product of M-Series and Incomplete H-fun	Extended Rectangular Mrc-Metric Spaces and Fixed Point Results. Mathematics, 2019, 7, 1136 Extended Rectangular Mrc-Metric Spaces and Fixed Point Results. Mathematics, 2019, 7, 1136 Extended Rectangular Mrc-Metric Spaces and Fixed Point Results. Mathematics, 2019, 7, 1136 Extended Rectangular Mrc-Metric Spaces and Fixed Point Results. Mathematics, 2019, 7, 1230 Numerical Solution of the Boundary Value Problems Arising in Magnetic Fields and Cylindrical Shells. Mathematics, 2019, 7, 508 Entropy Generation and Heat Transfer in Drilling Nanoliquids with Clay Nanoparticles. Entropy, 239 Entropy Generation and Heat Transfer in Drilling Nanoliquids with Clay Nanoparticles. Entropy, 289 Solutions of fractional kinetic equation and the generalized Galultype Struve function. Journal of Interdisciplinary Mathematics, 2019, 22, 1167-1184 Effect of Viscous Dissipation in Heat Transfer of MHD Flow of Micropolar Fluid Partial Slip Conditions: Dual Solutions and Stability Analysis. Energies, 2019, 12, 4617 A New Scheme Using Cubic B-Spline to Solve Non-Linear Differential Equations Arising in Visco-Elastic Flows and Hydrodynamic Stability Problems. Mathematics, 2019, 7, 1078 2-3 Certain families of integral formulas involving Struve functions. Boletim Da Sociedade Paranaense De Matematica, 2019, 37, 27-35 Notes on q-Hermite based unified Apostol type polynomials. Journal of Interdisciplinary Mathematics, 2019, 22, 1185-1203 Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface. Processes, 2019, 7, 926 Dual Solutions and Stability Analysis of Micropolar Nanofluid Flow with Slip Effect on Stretching/Shrinking Surfaces. Energies, 2019, 12, 4529 Brownian Motion and Thermophoretic Diffusion Effects on Micropolar Type Nanofluid Flow with Soret and Dufour Impacts over an inclined Sheet: Keller-Box Simulations. Energies, 2019, 12, 4191 Difference Equations, 2019, 22, 1123-1221 Application of incomplete Hinnctions in determination of Lambertis law. J	Extended Rectangular Mrc-Metric Spaces and Fixed Point Results. Mathematics, 2019, 7, 1136 2.3 4 Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application. 2.3 3 Numerical Solution of the Boundary Value Problems Arising in Magnetic Fields and Cylindrical Shells. Mathematics, 2019, 7, 1508 2.3 17 Entropy Generation and Heat Transfer in Drilling Nanoliquids with Clay Nanoparticles. Entropy, 2019, 21, 1226 Solutions of fractional kinetic equation and the generalized GaluType Struve Function. Journal of Interdisciplinary Mathematics, 2019, 22, 1167-1184 Effect of Viscous Dissipation in Heat Transfer of MHD Flow of Micropolar Fluid Partial Slip Conditions. Dual Solutions and Stability Analysis. Energies, 2019, 12, 4617 3.1 19 A New Scheme Using Cubic B-Spline to Solve Non-Linear Differential Equations Arising in Visco-Elastic Flows and Hydrodynamic Stability Problems. Mathematics, 2019, 7, 1078 2.3 9 Certain families of integral formulas involving Struve functions. Boletim Da Sociedade Paranaense De Matematica, 2019, 37, 27-35. Notes on q-Hermite based unified Apostol type polynomials. Journal of Interdisciplinary Mathematics, 2019, 22, 1185-1203 Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface. Processes, 2019, 7, 926 Dual Solutions and Stability Analysis of Micropolar Nanofluid Flow with Storet and Dufour Impacts over an Inclined Sheet: Keller-Box Simulations. Energies, 2019, 12, 4191 Gertain inequalities via generalized proportional Hadamard fractional integral operators. Advances in Difference Equations, 2019, 22, 1213-1221 Application of Incomplete Hfunctions in determination of LambertBlaw, Journal of Interdisciplinary Mathematics, 2019, 22, 1213-1221 Performance evaluation of newly constructed NZCC for SAC-OCDMA using direct detection Performance evaluation of newly constructed NZCC for SAC-OCDMA using direct detection

77	Development and performance analysis zero cross correlation code using a type of Pascall triangle matrix for spectral amplitude coding optical code division multiple access networks. <i>Optik</i> , 2018 , 159, 14-20	2.5	5
76	Fuzzy Fractional-Order PID Controller for Fractional Model of Pneumatic Pressure System. <i>Mathematical Problems in Engineering</i> , 2018 , 2018, 1-9	1.1	23
75	On Special Kinds of Involute and Evolute Curves in 4-Dimensional Minkowski Space. <i>Symmetry</i> , 2018 , 10, 317	2.7	3
74	CERTAIN INEQUALITIES INVOLVING THE (k, rho)-FRACTIONAL INTEGRAL OPERATOR. <i>Far East Journal of Mathematical Sciences</i> , 2018 , 103, 1879-1888	2	7
73	Multifarious Implicit Summation Formulae of Hermite-Based Poly-Daehee Polynomials. <i>Applied Mathematics and Information Sciences</i> , 2018 , 12, 305-310	2.4	9
72	Performance Analysis of Permutation Matrix Zero Cross Correlation Code for SAC-OCDMA Systems. <i>European Journal of Engineering Research and Science</i> , 2018 , 3, 15	1.5	9
71	Some new inequalities of the GrBs type for conformable fractional integrals. <i>AIMS Mathematics</i> , 2018 , 3, 575-583	2.2	27
70	Optimal parameter design of fractional order control based INC-MPPT for PV system. <i>Solar Energy</i> , 2018 , 159, 650-664	6.8	83
69	Discrete inverse Sumudu transform application to Whittaker and Zettl equations 2018,		1
68	Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric -function. <i>Journal of Inequalities and Applications</i> , 2018 , 2018, 135	2.1	24
67	New generalized systems of nonlinear ordered variational inclusions involving? operator in real ordered Hilbert spaces. <i>Journal of Inequalities and Applications</i> , 2018 , 2018, 252	2.1	1
66	On fractional kinetic equations k-Struve functions based solutions. <i>AEJ - Alexandria Engineering Journal</i> , 2018 , 57, 3249-3254	6.1	2
65	Some Inequalities of ∰by∰v Type for Conformable k-Fractional Integral Operators. <i>Symmetry</i> , 2018 , 10, 614	2.7	26
64	Symmetric Identities of Hermite-Bernoulli Polynomials and Hermite-Bernoulli Numbers Attached to a Dirichlet Character [[Symmetry, 2018, 10, 675]	2.7	O
63	A further extension of the extended Riemannliouville fractional derivative operator. <i>Turkish Journal of Mathematics</i> , 2018 , 42, 2631-2642	0.8	8
62	The (k , s) $$(k,s)$ \$ -fractional calculus of k -Mittag-Leffler function. <i>Advances in Difference Equations</i> , 2017 , 2017,	3.6	9
61	Dynamic k-Struve Sumudu solutions for fractional kinetic equations. <i>Advances in Difference Equations</i> , 2017 , 2017,	3.6	3
60	Certain inequalities involving the k-Struve function. <i>Journal of Inequalities and Applications</i> , 2017 , 2017, 71	2.1	8

(2016-2017)

59	Numerical construction of generalized matrix partitioning code for spectral amplitude coding optical CDMA systems. <i>Optik</i> , 2017 , 130, 619-632	2.5	12
58	Design of intelligent fuzzy fractional-order PID controller for pressure control application 2017,		6
57	StatisticalEConvergence in Probabilistic Normed Spaces. <i>Journal of Function Spaces</i> , 2017 , 2017, 1-7	0.8	1
56	AN EXTENDED BETA FUNCTION AND ITS PROPERTIES. Far East Journal of Mathematical Sciences, 2017 , 102, 1545-1557	2	8
55	AN INTEGRAL FORMULA OF THE MELLIN TRANSFORM TYPE INVOLVING THE EXTENDED WRIGHT-BESSEL FUNCTION. <i>Far East Journal of Mathematical Sciences</i> , 2017 , 102, 2903-2912	2	3
54	Generalized hypergeometric k-functions via (k,s)-fractional calculus. <i>Journal of Nonlinear Science and Applications</i> , 2017 , 10, 1791-1800	1.9	5
53	Modeling and identification of heat exchanger process using least squares support vector machines. <i>Thermal Science</i> , 2017 , 21, 2859-2869	1.2	3
52	CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND. <i>Communications of the Korean Mathematical Society</i> , 2017 , 32, 47-53		6
51	MONOTONICITY PROPERTIES OF THE GENERALIZED STRUVE FUNCTIONS. <i>Journal of the Korean Mathematical Society</i> , 2017 , 54, 575-598		4
50	Certain new integral formulas involving the generalized \$k\$-Bessel function. <i>Communications in Numerical Analysis</i> , 2017 , 2017, 84-90	Ο	2
49	Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution. <i>Advances in Difference Equations</i> , 2016 , 2016,	3.6	11
48	An efficient implicit regularized Lagrangian twin support vector regression. <i>Applied Intelligence</i> , 2016 , 44, 831-848	4.9	24
47	Generalized fractional kinetic equations involving generalized Struve function of the first kind. <i>Journal of King Saud University - Science</i> , 2016 , 28, 167-171	3.6	26
46	Generalized k-Mittag-Leffler function and its composition with pathway integral operators. <i>Journal of Nonlinear Science and Applications</i> , 2016 , 09, 3519-3526	1.9	16
45	Some new inequalities for (k,s)-fractional integrals. <i>Journal of Nonlinear Science and Applications</i> , 2016 , 09, 5374-5381	1.9	21
44	DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR GENERALIZED BESSEL FUNCTIONS. <i>Bulletin of the Korean Mathematical Society</i> , 2016 , 53, 127-138		6
43	Composition Formulas of Bessel-Struve Kernel Function. <i>Mathematical Problems in Engineering</i> , 2016 , 2016, 1-8	1.1	5
42	Fractional calculus and application of generalized Struve function. SpringerPlus, 2016, 5, 910		11

41	The Umbral operator and the integration involving generalized Bessel-type functions. <i>Open Mathematics</i> , 2015 , 13,	0.8	3
40	Construction of zero cross correlation code using a type of anti-diagonal-identity-column block matrices. <i>Optik</i> , 2014 , 125, 6586-6588	2.5	7
39	Marichev-Saigo-Maeda Fractional Integration Operators Involving Generalized Bessel Functions. <i>Mathematical Problems in Engineering</i> , 2014 , 2014, 1-11	1.1	17
38	Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials. <i>Proyecciones</i> , 2014 , 33, 77-90	0.5	3
37	Support Vector Machine Identification of Subspace Hammerstein Models. <i>International Journal of Computer Theory and Engineering</i> , 2014 , 7, 9-15	0.1	
36	Operators constructed by means of q-Lagrange polynomials and A-statistical approximation. <i>Applied Mathematics and Computation</i> , 2013 , 219, 6911-6918	2.7	32
35	Reduction of the fiber dispersion effects on MAI for long span high-speed OCDMA networks using Diagonal Eigenvalue Unity (DEU) code. <i>Optik</i> , 2013 , 124, 5765-5773	2.5	7
34	Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access. <i>Optical Fiber Technology</i> , 2013 , 19, 335-347	2.4	41
33	Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r?(1,2). <i>Optimal Control Applications and Methods</i> ,	1.7	10
32	An investigation on the approximate controllability of impulsive neutral delay differential inclusions of second order. <i>Mathematical Methods in the Applied Sciences</i> ,	2.3	1
31	Impact of surface temperature and convective boundary conditions on a Nanofluid flow over a radially stretched Riga plate. <i>Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</i> ,095440892110544	1.5	3
30	SPLINES SOLUTIONS OF HIGHER-ORDER BVPs THAT ARISE IN CONSISTENT MAGNETIZED FORCE FIELD. <i>Fractals</i> ,	3.2	1
29	Implementing renewable solar energy in presence of Maxwell nanofluid in parabolic trough solar collector: a computational study. <i>Waves in Random and Complex Media</i> ,1-32	1.9	15
28	Mechanical and thermal energies transport flow of a second grade fluid with novel fractional derivative. <i>Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</i> ,095440892110535	1.5	1
27	A New Class of Degenerate Hermite Poly-Genocchi Polynomials		2
26	A Mathematical Model of COVID-19 Using Fractional Derivative: Outbreak in India with Dynamics of Transmission and Control		19
25	Analysis of the COVID-19 Pandemic Spreading in India by an Epidemiological Model and Fractional Differential Operator		5
24	New discussion about the approximate controllability of fractional stochastic differential inclusions with order 1. <i>Asian Journal of Control</i> ,	1.7	8

23	Heat Transfer Analysis of MHD Rotating Flow of Fe3O4 Nanoparticles Through a Stretchable Surface. <i>Communications in Theoretical Physics</i> ,	2.4	21
22	Fibonacci wavelet method for solving Pennes bioheat transfer equation. <i>International Journal of Wavelets, Multiresolution and Information Processing</i> ,2150023	0.9	7
21	KKL correlation for simulation of nanofluid flow over a stretching sheet considering magnetic dipole and chemical reaction. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik,e202000372	1	5
20	New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order 1 . <i>Numerical Methods for Partial Differential Equations</i> ,	2.5	14
19	Variation of the shape of Fe3O4-nanoparticles on the heat transfer phenomenon with the inclusion of thermal radiation. <i>Journal of Thermal Analysis and Calorimetry</i> ,1	4.1	4
18	Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study. <i>Arabian Journal for Science and Engineering</i> ,1	2.5	5
17	Numerical study of 1D and 2D advection-diffusion-reaction equations using Lucas and Fibonacci polynomials. <i>Arabian Journal of Mathematics</i> ,1	0.8	2
16	Thermal and thermo-hydraulic behaviour of alumina-graphene hybrid nanofluid in minichannel heat sink: An´experimental study. <i>International Journal of Energy Research</i> ,	4.5	8
15	Controllability analysis for impulsive integro-differential equation via Atangana B aleanu fractional derivative. <i>Mathematical Methods in the Applied Sciences</i> ,	2.3	5
14	Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect. <i>Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</i> ,095440892110331	1.5	7
13	A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. <i>Asian Journal of Control</i> ,	1.7	14
12	EXISTENCE THEORY TO A CLASS OF FRACTIONAL ORDER HYBRID DIFFERENTIAL EQUATIONS. Fractals, 2240022	3.2	O
11	Controllability of second-order differential equations with state-dependent delay. <i>IMA Journal of Mathematical Control and Information</i> ,	1.1	2
10	Numerical analysis of heat transfer in magnetohydrodynamic micropolar jeffery fluid flow through porous medium over a stretching sheet with thermal radiation. <i>Journal of Thermal Analysis and Calorimetry</i> ,1	4.1	O
9	Numerical investigation of generalized perturbed Zakharov Kuznetsov equation of fractional order in dusty plasma. Waves in Random and Complex Media, 1-20	1.9	1
8	Entropy analysis of radiative [MgZn6Zr-Cu/EO] Casson hybrid nanoliquid with variant thermal conductivity along a stretching surface: Implementing Keller box method. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> ,095440622110656	1.3	1
7	A numerical scheme based on Gegenbauer wavelets for solving a class of relaxation scillation equations of fractional order. <i>Mathematical Sciences</i> ,1	1.6	0
6	Numerical investigation of fluid flow and heat transfer in micropolar fluids over a stretching domain. <i>Journal of Thermal Analysis and Calorimetry</i> ,1	4.1	1

5	Differential and integrodifferential equations for GouldHopperBrobeniusEuler polynomials. Mathematical Sciences, 1	1.6	
4	Radiation and slip effects on MHD point flow of nanofluid towards a stretching sheet with melting heat transfer. <i>Heat Transfer</i> ,	3.1	1
3	Dynamical irreversible processes analysis of Poiseuille magneto-hybrid nanofluid flow in microchannel: A novel case study. <i>Waves in Random and Complex Media</i> ,1-23	1.9	5
2	Intelligent networks knacks for numerical treatment of three-dimensional Darcy E orchheimer Williamson nanofluid model past a stretching surface. <i>Waves in Random and Complex Media</i> ,1-29	1.9	1
1	Numerical analysis of CattaneoII hristov heat flux model over magnetic couple stress Casson nanofluid flow by LavenbergIMarquard backpropagated neural networks. Waves in Random and Complex Media, 1-28	1.9	1