
Irina V Oleynik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3681916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ring size enlargement in an <i>ortho</i> ycloalkylâ€substituted bis(imino)pyridineâ€cobalt ethylene polymerization catalyst and its impact on performance and polymer properties. Applied Organometallic Chemistry, 2022, 36, e6529.	3.5	8
2	Modulating Thermostability and Productivity of Benzhydrylâ€&ubstituted Bis(imino)pyridineâ€ron C ₂ H ₄ Polymerization Catalysts through <i>ortho</i> _n H _{2nâ^'1} (n=5, 6, 8, 12) Ring Size Adjustment. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	7
3	Post-functionalization of narrowly dispersed PE waxes generated using tuned N,N,N′-cobalt ethylene polymerization catalysts substituted with ortho-cycloalkyl groups. Polymer, 2021, 213, 123294.	3.8	12
4	Boosting activity, thermostability, and lifetime of iron ethylene polymerization catalysts through gem â€dimethyl substitution and incorporation of ortho â€cycloalkyl substituents. Applied Organometallic Chemistry, 2021, 35, e6376.	3.5	5
5	Integrating Ringâ€6ize Adjustable Cycloalkyl and Benzhydryl Groups as the Steric Protection in Bis(arylimino)trihydroquinolineâ€Cobalt Catalysts for Ethylene Polymerization. European Journal of Inorganic Chemistry, 2021, 2021, 3956.	2.0	1
6	α,α'â€Bis (imino)â€2,3:5,6â€bis (pentamethylene)pyridines appended with benzhydryl and cycloalkyl substituent Probing their effectiveness as tunable <i>N,N,Nâ€</i> supports for cobalt ethylene polymerization catalysts. Applied Organometallic Chemistry, 2021, 35, e6429.	cs: 3.5	6
7	Synthesis and Properties of Iron(II) and Copper(II) Coordination Compounds with 2,6-Bis[1-(phenylimino)ethyl]pyridine. Russian Journal of General Chemistry, 2021, 91, 2167-2175.	0.8	3
8	Probing the effect of <i>ortho</i> -cycloalkyl ring size on activity and thermostability in cycloheptyl-fused <i>N</i> , <i>N</i> , <i>N</i> -iron ethylene polymerization catalysts. Dalton Transactions, 2020, 49, 136-146.	3.3	31
9	Achieving strictly linear polyethylenes by the <i>NNN</i> â€Fe precatalysts finely tuned with different sizes of <i>ortho</i> â€cycloalkyl substituents. Applied Organometallic Chemistry, 2020, 34, e5937.	3.5	15
10	Adjusting Ortho-Cycloalkyl Ring Size in a Cycloheptyl-Fused N,N,N-Iron Catalyst as Means to Control Catalytic Activity and Polyethylene Properties. Catalysts, 2020, 10, 1002.	3.5	16
11	Highly active titanium(<scp>IV</scp>) dichloride <scp>FI</scp> catalysts bearing a diallylamino group for the synthesis of disentangled <scp>UHMWPE</scp> . Polymers for Advanced Technologies, 2020, 31, 1921-1934.	3.2	12
12	High molecular weight polyethylenes of narrow dispersity promoted using bis(arylimino)cyclohepta[<i>b</i>]pyridine-cobalt catalysts <i>ortho</i> -substituted with benzhydryl & cycloalkyl groups. Dalton Transactions, 2020, 49, 4774-4784.	3.3	22
13	Ambipolar polyimides with pendant groups based on 9 <i>H</i> -thioxanthene-9-one derivatives: synthesis, thermostability, electrochemical and electrochromic properties. Polymer Chemistry, 2020, 11, 2243-2251.	3.9	8
14	Highly Linear Polyethylenes Achieved Using Thermo-Stable and Efficient Cobalt Precatalysts Bearing Carbocyclic-Fused NNN-Pincer Ligand. Molecules, 2019, 24, 1176.	3.8	30
15	Strictly linear polyethylene using Co-catalysts chelated by fused bis(arylimino)pyridines: Probing ortho-cycloalkyl ring-size effects on molecular weight. Polymer, 2018, 149, 45-54.	3.8	47
16	<i>ortho</i> -Cycloalkyl substituted <i>N</i> , <i>N</i> ′-diaryliminoacenaphthene-Ni(<scp>ii</scp>) catalysts for polyethylene elastomers; exploring ring size and temperature effects. Dalton Transactions, 2017, 46, 15684-15697.	3.3	32
17	8-(2-Cycloalkylphenylimino)-5,6,7-trihydro-quinolylnickel halides: polymerizing ethylene to highly branched and lower molecular weight polyethylenes. Inorganic Chemistry Frontiers, 2015, 2, 223-227.	6.0	47
18	Targeting polyethylene waxes: 9-(2-cycloalkylphenylimino)-5,6,7,8-tetrahydrocycloheptapyridylnickel halides and their use as catalysts for ethylene polymerization. RSC Advances, 2015, 5, 77913-77921.	3.6	45