
Jason D Yeatman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3681793/publications.pdf Version: 2024-02-01

LASON D YEATMAN

#	Article	IF	CITATIONS
1	The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 2017, 8, 1349.	12.8	956
2	Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification. PLoS ONE, 2012, 7, e49790.	2.5	669
3	Lifespan maturation and degeneration of human brain white matter. Nature Communications, 2014, 5, 4932.	12.8	335
4	Development of white matter and reading skills. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3045-53.	7.1	288
5	Anatomical Properties of the Arcuate Fasciculus Predict Phonological and Reading Skills in Children. Journal of Cognitive Neuroscience, 2011, 23, 3304-3317.	2.3	284
6	Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nature Medicine, 2013, 19, 1667-1672.	30.7	261
7	Evaluation and statistical inference for human connectomes. Nature Methods, 2014, 11, 1058-1063.	19.0	225
8	The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5214-23.	7.1	221
9	Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections. Brain and Language, 2013, 125, 146-155.	1.6	206
10	A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex. Cerebral Cortex, 2016, 26, 2205-2214.	2.9	139
11	QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nature Methods, 2021, 18, 775-778.	19.0	127
12	Learning to See Words. Annual Review of Psychology, 2012, 63, 31-53.	17.7	121
13	Bottom-up and top-down computations in word- and face-selective cortex. ELife, 2017, 6, .	6.0	118
14	Biological development of reading circuits. Current Opinion in Neurobiology, 2013, 23, 261-268.	4.2	112
15	Rapid and widespread white matter plasticity during an intensive reading intervention. Nature Communications, 2018, 9, 2260.	12.8	107
16	Diffusion properties of major white matter tracts in young, typically developing children. Neurolmage, 2014, 88, 143-154.	4.2	76
17	Controlling for Participants' Viewing Distance in Large-Scale, Psychophysical Online Experiments Using a Virtual Chinrest. Scientific Reports, 2020, 10, 904.	3.3	74
18	The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex, 2017, 97, 274-276.	2.4	70

JASON D YEATMAN

#	Article	IF	CITATIONS
19	Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex. NeuroImage, 2018, 182, 304-313.	4.2	68
20	Specific language and reading skills in school-aged children and adolescents are associated with prematurity after controlling for IQ. Neuropsychologia, 2011, 49, 906-913.	1.6	67
21	Evaluating the Accuracy of Diffusion MRI Models in White Matter. PLoS ONE, 2015, 10, e0123272.	2.5	67
22	Parallel spatial channels converge at a bottleneck in anterior word-selective cortex. Proceedings of the United States of America, 2019, 116, 10087-10096.	7.1	66
23	White Matter Consequences of Retinal Receptor and Ganglion Cell Damage. Investigative Ophthalmology and Visual Science, 2014, 55, 6976-6986.	3.3	65
24	The corticospinal tract profile in amyotrophic lateral sclerosis. Human Brain Mapping, 2017, 38, 727-739.	3.6	54
25	Abnormal white matter properties in adolescent girls with anorexia nervosa. NeuroImage: Clinical, 2015, 9, 648-659.	2.7	48
26	A browser-based tool for visualization and analysis of diffusion MRI data. Nature Communications, 2018, 9, 940.	12.8	46
27	Individual differences in auditory sentence comprehension in children: An exploratory event-related functional magnetic resonance imaging investigation. Brain and Language, 2010, 114, 72-79.	1.6	42
28	Combining Citizen Science and Deep Learning to Amplify Expertise in Neuroimaging. Frontiers in Neuroinformatics, 2019, 13, 29.	2.5	41
29	Optimizing text for an individual's visual system: The contribution of visual crowding to reading difficulties. Cortex, 2018, 103, 291-301.	2.4	39
30	Word selectivity in high-level visual cortex and reading skill. Developmental Cognitive Neuroscience, 2019, 36, 100593.	4.0	38
31	Applying microstructural models to understand the role of white matter in cognitive development. Developmental Cognitive Neuroscience, 2019, 36, 100624.	4.0	37
32	Reading: The Confluence of Vision and Language. Annual Review of Vision Science, 2021, 7, 487-517.	4.4	35
33	Neural plasticity after pre-linguistic injury to the arcuate and superior longitudinal fasciculi. Cortex, 2013, 49, 301-311.	2.4	34
34	Diffusional Kurtosis Imaging in the Diffusion Imaging in Python Project. Frontiers in Human Neuroscience, 2021, 15, 675433.	2.0	34
35	Bridging sensory and language theories of dyslexia: Toward a multifactorial model. Developmental Science, 2021, 24, e13039.	2.4	33
36	The link between reading ability and visual spatial attention across development. Cortex, 2019, 121, 44-59.	2.4	29

3

JASON D YEATMAN

#	Article	IF	CITATIONS
37	White matter myelination during early infancy is linked to spatial gradients and myelin content at birth. Nature Communications, 2022, 13, 997.	12.8	29
38	Tractography optimization using quantitative T1 mapping in the human optic radiation. Neurolmage, 2018, 181, 645-658.	4.2	28
39	Effects of early language, speech, and cognition on later reading: a mediation analysis. Frontiers in Psychology, 2013, 4, 586.	2.1	27
40	Aging-Resilient Associations between the Arcuate Fasciculus and Vocabulary Knowledge: Microstructure or Morphology?. Journal of Neuroscience, 2016, 36, 7210-7222.	3.6	27
41	Evaluating the Reliability of Human Brain White Matter Tractometry. , 2021, 2021, .		27
42	You Can't Recognize Two Words Simultaneously. Trends in Cognitive Sciences, 2019, 23, 812-814.	7.8	25
43	Anatomy and physiology of word-selective visual cortex: from visual features to lexical processing. Brain Structure and Function, 2021, 226, 3051-3065.	2.3	25
44	Evaluating arcuate fasciculus laterality measurements across dataset and tractography pipelines. Human Brain Mapping, 2019, 40, 3695-3711.	3.6	24
45	The causal relationship between dyslexia and motion perception reconsidered. Scientific Reports, 2017, 7, 4185.	3.3	22
46	Reading ability and phoneme categorization. Scientific Reports, 2018, 8, 16842.	3.3	17
47	White matter fascicles and cortical microstructure predict reading-related responses in human ventral temporal cortex. NeuroImage, 2021, 227, 117669.	4.2	16
48	Using Diffusion Tensor Imaging and Fiber Tracking to Characterize Diffuse Perinatal White Matter Injury: A Case Report. Journal of Child Neurology, 2009, 24, 795-800.	1.4	15
49	Multidimensional analysis and detection of informative features in human brain white matter. PLoS Computational Biology, 2021, 17, e1009136.	3.2	14
50	Automaticity in the reading circuitry. Brain and Language, 2021, 214, 104906.	1.6	12
51	Neurobiological underpinnings of rapid white matter plasticity during intensive reading instruction. NeuroImage, 2021, 243, 118453.	4.2	12
52	A Comparison of Quantitative R1 and Cortical Thickness in Identifying Age, Lifespan Dynamics, and Disease States of the Human Cortex. Cerebral Cortex, 2021, 31, 1211-1226.	2.9	10
53	Development of the visual white matter pathways mediates development of electrophysiological responses in visual cortex. Human Brain Mapping, 2021, 42, 5785-5797.	3.6	10
54	Rapid online assessment of reading ability. Scientific Reports, 2021, 11, 6396.	3.3	9

JASON D YEATMAN

#	Article	IF	CITATIONS
55	Speed discrimination predicts word but not pseudo-word reading rate in adults and children. Brain and Language, 2014, 138, 27-37.	1.6	7
56	Intensive Summer Intervention Drives Linear Growth of Reading Skill in Struggling Readers. Frontiers in Psychology, 2019, 10, 1900.	2.1	7
57	Categorical phoneme labeling in children with dyslexia does not depend on stimulus duration. Journal of the Acoustical Society of America, 2019, 146, 245-255.	1.1	6
58	Spatial attention in encoding letter combinations. Scientific Reports, 2021, 11, 24179.	3.3	4
59	Groupyr: Sparse Group Lasso in Python. Journal of Open Source Software, 2021, 6, 3024.	4.6	3
60	Audiovisual Speech Processing in Relationship to Phonological and Vocabulary Skills in First Graders. Journal of Speech, Language, and Hearing Research, 2021, 64, 5022-5040.	1.6	3
61	Can an Online Reading Camp Teach 5-Year-Old Children to Read?. Frontiers in Human Neuroscience, 2022, 16, 793213.	2.0	3
62	Annotating digital text with phonemic cues to support decoding in struggling readers. PLoS ONE, 2020, 15, e0243435.	2.5	2
63	Context effects on phoneme categorization in children with dyslexia. Journal of the Acoustical Society of America, 2020, 148, 2209-2222.	1.1	1
64	Abnormal White Matter Properties in Adolescent Girls With Anorexia Nervosa. Journal of Adolescent Health, 2016, 58, S24-S25.	2.5	0
65	Mechanisms of covert spatial attention in encoding letter combinations. Journal of Vision, 2021, 21, 2268.	0.3	0
66	White matter anatomy and cortical microstructure predict reading-related responses in ventral temporal cortex. Journal of Vision, 2020, 20, 201.	0.3	0
67	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		0
68	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		0
69	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		Ο
70	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		0
71	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		Ο
72	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		0

5

#	Article	IF	CITATIONS
73	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		0
74	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		0
75	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		0
76	Annotating digital text with phonemic cues to support decoding in struggling readers. , 2020, 15, e0243435.		0