Ian R Horrocks

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3681612/ian-r-horrocks-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

183
papers7,808
citations41
h-index84
g-index191
ext. papers8,956
ext. citations1.5
avg, IF6.16
L-index

#	Paper	IF	Citations
183	The Complexity and Expressive Power of Limit Datalog. <i>Journal of the ACM</i> , 2022 , 69, 1-83	2	
182	Modular materialisation of Datalog programs. Artificial Intelligence, 2022, 308, 103726	3.6	
181	The Dow Jones Knowledge Graph. <i>Lecture Notes in Computer Science</i> , 2022 , 427-443	0.9	
180	An assertion and alignment correction framework for large scale knowledge bases. <i>Semantic Web</i> , 2021 , 1-25	2.4	
179	OWL2Vec*: embedding of OWL ontologies. <i>Machine Learning</i> , 2021 , 110, 1813	4	10
178	Streaming Partitioning of RDF Graphs for Datalog Reasoning. <i>Lecture Notes in Computer Science</i> , 2021 , 3-22	0.9	1
177	Use of Semantic Technologies to Inform Progress Toward Zero-Carbon Economy. <i>Lecture Notes in Computer Science</i> , 2021 , 665-681	0.9	
176	Computing CQ Lower-Bounds over OWL 2 Through Approximation to RSA. <i>Lecture Notes in Computer Science</i> , 2021 , 200-216	0.9	
175	Pay-as-you-go consequence-based reasoning for the description logic SROIQ. <i>Artificial Intelligence</i> , 2021 , 298, 103518	3.6	1
174	Augmenting Ontology Alignment by Semantic Embedding and Distant Supervision. <i>Lecture Notes in Computer Science</i> , 2021 , 392-408	0.9	5
173	Correcting Knowledge Base Assertions 2020 ,		6
172	Maintenance of datalog materialisations revisited. Artificial Intelligence, 2019, 269, 76-136	3.6	12
171	An Efficient Index for RDF Query Containment 2019 ,		2
170	Datalog Reasoning over Compressed RDF Knowledge Bases 2019 ,		3
169	Satisfaction and Implication of Integrity Constraints in Ontology-based Data Access 2019,		7
168	Learning Semantic Annotations for Tabular Data 2019 ,		6
167	15 Years of Consequence-Based Reasoning. <i>Lecture Notes in Computer Science</i> , 2019 , 573-587	0.9	1

(2016-2019)

166	Datalog Materialisation in Distributed RDF Stores with Dynamic Data Exchange. <i>Lecture Notes in Computer Science</i> , 2019 , 21-37	0.9	2
165	Stratified Negation in Limit Datalog Programs 2018 ,		3
164	Event-Enhanced Learning for KG Completion. Lecture Notes in Computer Science, 2018, 541-559	0.9	12
163	2018,		5
162	OptiqueVQS: A visual query system over ontologies for industry. Semantic Web, 2018 , 9, 627-660	2.4	45
161	Semantic Diagnostics of Smart Factories. <i>Lecture Notes in Computer Science</i> , 2018 , 277-294	0.9	2
160	Diagnostics of Trains with Semantic Diagnostics Rules. Lecture Notes in Computer Science, 2018, 54-71	0.9	6
159	Dynamic Data Exchange in Distributed RDF Stores. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2018 , 30, 2312-2325	4.2	4
158	Ontology-based end-user visual query formulation: Why, what, who, how, and which?. <i>Universal Access in the Information Society</i> , 2017 , 16, 435-467	2.5	25
157	RODI: Benchmarking relational-to-ontology mapping generation quality. <i>Semantic Web</i> , 2017 , 9, 25-52	2.4	24
156	Semantic Rules for Machine Diagnostics 2017 ,		10
155	SemDia 2017 ,		9
154	Foundations of Declarative Data Analysis Using Limit Datalog Programs 2017,		4
153	The Bag Semantics of Ontology-Based Data Access 2017 ,		4
152	Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users. <i>Universal Access in the Information Society</i> , 2016 , 15, 129-152	2.5	33
151	Ontology-Based Integration of Streaming and Static Relational Data with Optique 2016 ,		28
150	Capturing Industrial Information Models with Ontologies and Constraints. <i>Lecture Notes in Computer Science</i> , 2016 , 325-343	0.9	34
149	Enabling semantic access to static and streaming distributed data with optique 2016 ,		12

148	Distributed RDF Query Answering with Dynamic Data Exchange. <i>Lecture Notes in Computer Science</i> , 2016 , 480-497	0.9	9
147	Towards the Semantic Enrichment of Free-Text Annotation of Image Quality Assessment for UK Biobank Cardiac Cine MRI Scans. <i>Lecture Notes in Computer Science</i> , 2016 , 238-248	0.9	11
146	Using Semantic Technology to Tame the Data Variety Challenge. <i>IEEE Internet Computing</i> , 2016 , 20, 62-6	6 6 .4	41
145	Towards Analytics Aware Ontology Based Access to Static and Streaming Data. <i>Lecture Notes in Computer Science</i> , 2016 , 344-362	0.9	14
144	Semantic Technologies for Data Analysis in Health Care. Lecture Notes in Computer Science, 2016, 400-4	17 .9	8
143	RDFox: A Highly-Scalable RDF Store. <i>Lecture Notes in Computer Science</i> , 2015 , 3-20	0.9	65
142	Ontology Based Access to Exploration Data at Statoil. <i>Lecture Notes in Computer Science</i> , 2015 , 93-112	0.9	35
141	BootOX: Practical Mapping of RDBs to OWL 2. Lecture Notes in Computer Science, 2015, 113-132	0.9	45
140	Ontology-Based Visual Query Formulation: An Industry Experience. <i>Lecture Notes in Computer Science</i> , 2015 , 842-854	0.9	14
139	Consequence-based and fixed-parameter tractable reasoning in description logics. <i>Artificial Intelligence</i> , 2014 , 209, 29-77	3.6	10
138	HermiT: An OWL 2 Reasoner. Journal of Automated Reasoning, 2014, 53, 245-269	1	255
137	Description Logics. <i>IEEE Intelligent Systems</i> , 2014 , 29, 12-19	4.2	21
136	Why not simply Google? 2014 ,		3
135	A rule-based ontological framework for the classification of molecules. <i>Journal of Biomedical Semantics</i> , 2014 , 5, 17	2.2	7
134	(mathcal{EL})-ifying Ontologies. Lecture Notes in Computer Science, 2014, 464-479	0.9	7
133	Pushing the Boundaries of Tractable Ontology Reasoning. <i>Lecture Notes in Computer Science</i> , 2014 , 148	-1663	4
132	Towards Exploiting Query History for Adaptive Ontology-Based Visual Query Formulation. <i>Communications in Computer and Information Science</i> , 2014 , 107-119	0.3	11
131	Evolution of Semantic Systems 2013 ,		5

(2012-2013)

130	Reasoning Web. Semantic Technologies for Intelligent Data Access. <i>Lecture Notes in Computer Science</i> , 2013 ,	0.9	3
129	OptiqueVQS 2013 ,		27
128	What Are Ontologies Good For? 2013 , 175-188		13
127	Order matters! Harnessing a world of orderings for reasoning over massive data. <i>Semantic Web</i> , 2013 , 4, 219-231	2.4	19
126	Making the most of your triple store 2013 ,		8
125	Scalable End-User Access to Big Data 2013 , 205-244		17
124	A Preliminary Approach on Ontology-Based Visual Query Formulation for Big Data. <i>Communications in Computer and Information Science</i> , 2013 , 201-212	0.3	11
123	Optique: Towards OBDA Systems for Industry. Lecture Notes in Computer Science, 2013 , 125-140	0.9	24
122	Optique: OBDA Solution for Big Data. Lecture Notes in Computer Science, 2013, 293-295	0.9	10
121	Publishing the Norwegian Petroleum Directoratell FactPages as Semantic Web Data. <i>Lecture Notes in Computer Science</i> , 2013 , 162-177	0.9	26
12 0	The Energy Management Adviser at EDF. Lecture Notes in Computer Science, 2013, 49-64	0.9	7
119	Concrete Results on Abstract Rules. Lecture Notes in Computer Science, 2013, 414-426	0.9	1
118	Complete Query Answering over Horn Ontologies Using a Triple Store. <i>Lecture Notes in Computer Science</i> , 2013 , 720-736	0.9	3
117	Semantics? scalability???. Journal of Zhejiang University: Science C, 2012, 13, 241-244		2
116	A novel approach to ontology classification. Web Semantics, 2012, 14, 84-101	2.9	41
115	Delta-reasoner 2012 ,		25
114	Modelling Structured Domains Using Description Graphs and Logic Programming. <i>Lecture Notes in Computer Science</i> , 2012 , 330-344	0.9	5
113	MORe: Modular Combination of OWL Reasoners for Ontology Classification. <i>Lecture Notes in Computer Science</i> , 2012 , 1-16	0.9	19

112	Logic-based assessment of the compatibility of UMLS ontology sources. <i>Journal of Biomedical Semantics</i> , 2011 , 2 Suppl 1, S2	2.2	25
111	Tractable Extensions of the Description Logic ({mathcal{EL}}) with Numerical Datatypes. <i>Journal of Automated Reasoning</i> , 2011 , 47, 427-450	1	7
110	Supporting concurrent ontology development: Framework, algorithms and tool. <i>Data and Knowledge Engineering</i> , 2011 , 70, 146-164	1.5	29
109	KR and Reasoning on the Semantic Web: OWL 2011 , 365-398		18
108	Tool Support for Ontology Engineering 2011 , 103-112		7
107	SPARQL Query Answering over OWL Ontologies. Lecture Notes in Computer Science, 2011, 382-396	0.9	30
106	Repairing Ontologies for Incomplete Reasoners. Lecture Notes in Computer Science, 2011, 681-696	0.9	8
105	Tractable query answering and rewriting under description logic constraints. <i>Journal of Applied Logic</i> , 2010 , 8, 186-209		62
104	Optimized Description Logic Reasoning via Core Blocking. Lecture Notes in Computer Science, 2010 , 457-	- 4 79	13
103	Tractable Extensions of the Description Logic (cal EL) with Numerical Datatypes. <i>Lecture Notes in Computer Science</i> , 2010 , 61-75	0.9	2
102	Optimising Ontology Classification. <i>Lecture Notes in Computer Science</i> , 2010 , 225-240	0.9	16
101	Completeness Guarantees for Incomplete Reasoners. Lecture Notes in Computer Science, 2010, 747-763	0.9	2
100	Bridging the gap between OWL and relational databases. Web Semantics, 2009, 7, 74-89	2.9	91
99	Representing ontologies using description logics, description graphs, and rules. <i>Artificial Intelligence</i> , 2009 , 173, 1275-1309	3.6	32
98	Description Logics 2009 , 21-43		22
97	Extracting Modules from Ontologies: A Logic-Based Approach. <i>Lecture Notes in Computer Science</i> , 2009 , 159-186	0.9	15
96	Ontology Integration Using Mappings: Towards Getting the Right Logical Consequences. <i>Lecture Notes in Computer Science</i> , 2009 , 173-187	0.9	45
95	Efficient Query Answering for OWL 2. Lecture Notes in Computer Science, 2009, 489-504	0.9	37

94	Exploiting Partial Information in Taxonomy Construction. Lecture Notes in Computer Science, 2009, 569-	-58.4)	7
93	Ontologies and the semantic web. <i>Communications of the ACM</i> , 2008 , 51, 58-67	2.5	160
92	Rewriting Conjunctive Queries over Description Logic Knowledge Bases. <i>Lecture Notes in Computer Science</i> , 2008 , 199-214	0.9	5
91	Chapter 3 Description Logics. Foundations of Artificial Intelligence, 2008, 135-179		87
90	OWL 2: The next step for OWL. Web Semantics, 2008, 6, 309-322	2.9	459
89	Semantic Web. <i>Human-computer Interaction Series</i> , 2008 , 315-330	0.6	1
88	Individual Reuse in Description Logic Reasoning. Lecture Notes in Computer Science, 2008, 242-258	0.9	2
87	OWL Datatypes: Design and Implementation. <i>Lecture Notes in Computer Science</i> , 2008 , 307-322	0.9	12
86	A comparison of two modelling paradigms in the Semantic Web. Web Semantics, 2007, 5, 240-250	2.9	34
85	Hybrid Logics and Ontology Languages. <i>Electronic Notes in Theoretical Computer Science</i> , 2007 , 174, 3-1	4 0.7	9
84	Optimizing Terminological Reasoning for Expressive Description Logics. <i>Journal of Automated Reasoning</i> , 2007 , 39, 277-316	1	38
83	A Tableau Decision Procedure for (mathcal{SHOIQ}). Journal of Automated Reasoning, 2007, 39, 249-27	61	111
82	Bridging the gap between OWL and relational databases 2007,		53
81	Just the right amount 2007 ,		80
80	RDFS(FA): Connecting RDF(S) and OWL DL. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2007 , 19, 192-206	4.2	32
79	Semantic web 2007 ,		9
78	4 Computational modal logic. Studies in Logic and Practical Reasoning, 2007, 3, 181-245		24
77	Optimized Reasoning in Description Logics Using Hypertableaux. <i>Lecture Notes in Computer Science</i> , 2007 , 67-83	0.9	39

76	OBO and OWL: Leveraging Semantic Web Technologies for the Life Sciences. <i>Lecture Notes in Computer Science</i> , 2007 , 169-182	0.9	13
75	Position paper 2006 ,		26
74	OWL FA 2006 ,		19
73	f-SWRL: A Fuzzy Extension of SWRL. Lecture Notes in Computer Science, 2006, 28-46	0.9	20
72	FaCT++ Description Logic Reasoner: System Description. <i>Lecture Notes in Computer Science</i> , 2006 , 292-	297 .9	317
71	OWL-Eu: Adding customised datatypes into OWL. Web Semantics, 2006, 4, 29-39	2.9	15
70	Reasoning Support for Expressive Ontology Languages Using a Theorem Prover. <i>Lecture Notes in Computer Science</i> , 2006 , 201-218	0.9	17
69	Can OWL and Logic Programming Live Together Happily Ever After?. <i>Lecture Notes in Computer Science</i> , 2006 , 501-514	0.9	49
68	Framework for an Automated Comparison of Description Logic Reasoners. <i>Lecture Notes in Computer Science</i> , 2006 , 654-667	0.9	22
67	Description Logics as Ontology Languages for the Semantic Web. <i>Lecture Notes in Computer Science</i> , 2005 , 228-248	0.9	86
66	OWL: A Description Logic Based Ontology Language. Lecture Notes in Computer Science, 2005, 5-8	0.9	21
65	Applications of Description Logics: State of the Art and Research Challenges. <i>Lecture Notes in Computer Science</i> , 2005 , 78-90	0.9	7
64	OWL-Eu: Adding Customised Datatypes into OWL. Lecture Notes in Computer Science, 2005, 153-166	0.9	12
63	OWL rules: A proposal and prototype implementation. Web Semantics, 2005, 3, 23-40	2.9	189
62	Semantic Web Architecture: Stack or Two Towers?. Lecture Notes in Computer Science, 2005, 37-41	0.9	41
61	The OWL Instance Store: System Description. <i>Lecture Notes in Computer Science</i> , 2005 , 177-181	0.9	22
60	Description Logics in Ontology Applications. Lecture Notes in Computer Science, 2005, 2-13	0.9	10
59	OWL: A Description Logic Based Ontology Language. Lecture Notes in Computer Science, 2005 , 1-4	0.9	10

(2002-2005)

58	A Little Semantic Web Goes a Long Way in Biology. Lecture Notes in Computer Science, 2005, 786-800	0.9	17
57	Reducing OWL Entailment to Description Logic Satisfiability. SSRN Electronic Journal, 2004,	1	9
56	A proposal for an owl rules language 2004 ,		124
55	A Software Framework for Matchmaking Based on Semantic Web Technology. <i>International Journal of Electronic Commerce</i> , 2004 , 8, 39-60	5.4	109
54	Reducing OWL entailment to description logic satisfiability. Web Semantics, 2004, 1, 345-357	2.9	137
53	OWL-QLE language for deductive query answering on the Semantic Web. Web Semantics, 2004, 2, 19-29	9 2.9	83
52	Decidability of . Artificial Intelligence, 2004 , 160, 79-104	3.6	64
51	Using Vampire to Reason with OWL. Lecture Notes in Computer Science, 2004, 471-485	0.9	25
50	Three theses of representation in the semantic web 2003 ,		28
49	Description logic programs 2003 ,		266
48	A software framework for matchmaking based on semantic web technology 2003,		307
47	Reducing OWL Entailment to Description Logic Satisfiability. <i>Lecture Notes in Computer Science</i> , 2003 , 17-29	0.9	76
46	Description Logic Programs: Combining Logic Programs with Description Logic. SSRN Electronic Journal, 2003 ,	1	120
46		2.9	120 777
	Journal, 2003,		
45	From SHIQ and RDF to OWL: the making of a Web Ontology Language. Web Semantics, 2003, 1, 7-26	2.9	777
45 44	From SHIQ and RDF to OWL: the making of a Web Ontology Language. Web Semantics, 2003, 1, 7-26 RDFS(FA) and RDF MT: Two Semantics for RDFS. Lecture Notes in Computer Science, 2003, 30-46	2.9	777

40	Building a bioinformatics ontology using OIL. <i>IEEE Transactions on Information Technology in Biomedicine</i> , 2002 , 6, 135-41		35
39	Ontology-based knowledge management. <i>Computer</i> , 2002 , 35, 56-59	1.6	64
38	Enabling knowledge representation on the Web by extending RDF Schema. <i>Computer Networks</i> , 2002 , 39, 609-634	5∙4	20
37	Combinations of Modal Logics. Artificial Intelligence Review, 2002, 17, 1-20	9.7	26
36	Evaluating Optimized Decision Procedures for Propositional Modal K (m) Satisfiability. <i>Journal of Automated Reasoning</i> , 2002 , 28, 173-204	1	3
35	DAML+OIL: A Reason-Able Web Ontology Language. Lecture Notes in Computer Science, 2002, 174-174	0.9	3
34	Abox Satisfiability Reduced to Terminological Reasoning in Expressive Description Logics. <i>Lecture Notes in Computer Science</i> , 2002 , 435-449	0.9	1
33	Extending Datatype Support in Web Ontology Reasoning. Lecture Notes in Computer Science, 2002, 106	7പി981	7
32	Reasoning with Expressive Description Logics: Theory and Practice. <i>Lecture Notes in Computer Science</i> , 2002 , 1-15	0.9	13
31	DAML+OIL: A Reason-able Web Ontology Language. Lecture Notes in Computer Science, 2002, 2-13	0.9	24
30	Querying the Semantic Web: A Formal Approach. Lecture Notes in Computer Science, 2002, 177-191	0.9	45
29	Enabling knowledge representation on the Web by extending RDF schema 2001,		34
28	. IEEE Intelligent Systems, 2001 , 16, 38-45	4.2	318
27	OilEd: A Reason-able Ontology Editor for the Semantic Web. <i>Lecture Notes in Computer Science</i> , 2001 , 396-408	0.9	88
26	The Semantic Web: the roles of XML and RDF. IEEE Internet Computing, 2000, 4, 63-73	2.4	280
25	Reasoning with Individuals for the Description Logic (mathcal{SHIQ}). <i>Lecture Notes in Computer Science</i> , 2000 , 482-496	0.9	68
24	Benchmark Analysis with FaCT. Lecture Notes in Computer Science, 2000, 62-66	0.9	8
23	How to Decide Query Containment under Constraints Using a Description Logic 2000 , 326-343		23

22	Optimizing description logic subsumption. <i>Journal of Logic and Computation</i> , 1999 , 9, 267-293	0.4	90
21	A description logic with transitive and inverse roles and role hierarchies. <i>Journal of Logic and Computation</i> , 1999 , 9, 385-410	0.4	132
20	Practical Reasoning for Expressive Description Logics. Lecture Notes in Computer Science, 1999, 161-180	0 0.9	139
19	Feasibility of Optimised Disjunctive Reasoning for Approximate Matching. <i>Lecture Notes in Computer Science</i> , 1999 , 328-339	0.9	1
18	DLP and FaCT. Lecture Notes in Computer Science, 1999 , 19-23	0.9	8
17	The FaCT System. <i>Lecture Notes in Computer Science</i> , 1998 , 307-312	0.9	78
16	Optimising propositional modal satisfiability for description logic subsumption. <i>Lecture Notes in Computer Science</i> , 1998 , 234-246	0.9	9
15	FaCT and DLP. Lecture Notes in Computer Science, 1998 , 27-30	0.9	17
14	The GRAIL concept modelling language for medical terminology. <i>Artificial Intelligence in Medicine</i> , 1997 , 9, 139-71	7.4	176
13	OIL and DAML + OIL: Ontology Languages for the Semantic Web11-31		1
13	OIL and DAML + OIL: Ontology Languages for the Semantic Web11-31 Hypertableau Reasoning for Description Logics. <i>Journal of Artificial Intelligence Research</i> , 36, 165-228	4	162
		4	
12	Hypertableau Reasoning for Description Logics. <i>Journal of Artificial Intelligence Research</i> , 36, 165-228 Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice. <i>Journal of</i>		162
12	Hypertableau Reasoning for Description Logics. <i>Journal of Artificial Intelligence Research</i> , 36, 165-228 Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice. <i>Journal of Artificial Intelligence Research</i> , 43, 419-476 PAGOdA: Pay-As-You-Go Ontology Query Answering Using a Datalog Reasoner. <i>Journal of Artificial</i>	4	162 15
12 11 10	Hypertableau Reasoning for Description Logics. <i>Journal of Artificial Intelligence Research</i> , 36, 165-228 Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice. <i>Journal of Artificial Intelligence Research</i> , 43, 419-476 PAGOdA: Pay-As-You-Go Ontology Query Answering Using a Datalog Reasoner. <i>Journal of Artificial Intelligence Research</i> , 54, 309-367 Module Extraction in Expressive Ontology Languages via Datalog Reasoning. <i>Journal of Artificial</i>	4	162 15 18
12 11 10	Hypertableau Reasoning for Description Logics. <i>Journal of Artificial Intelligence Research</i> ,36, 165-228 Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice. <i>Journal of Artificial Intelligence Research</i> ,43, 419-476 PAGOdA: Pay-As-You-Go Ontology Query Answering Using a Datalog Reasoner. <i>Journal of Artificial Intelligence Research</i> ,54, 309-367 Module Extraction in Expressive Ontology Languages via Datalog Reasoning. <i>Journal of Artificial Intelligence Research</i> ,55, 499-564	4 4	162 15 18
12 11 10 9 8	Hypertableau Reasoning for Description Logics. <i>Journal of Artificial Intelligence Research</i> , 36, 165-228 Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice. <i>Journal of Artificial Intelligence Research</i> , 43, 419-476 PAGOdA: Pay-As-You-Go Ontology Query Answering Using a Datalog Reasoner. <i>Journal of Artificial Intelligence Research</i> , 54, 309-367 Module Extraction in Expressive Ontology Languages via Datalog Reasoning. <i>Journal of Artificial Intelligence Research</i> , 55, 499-564 From SHIQ and RDF to OWL: The Making of a Web Ontology Language. <i>SSRN Electronic Journal</i> ,	4 4 1	162 15 18 15 8

4	OWL-Eu: Adding Customised Datatypes Into OWL. SSRN Electronic Journal,	1	1
3	A Comparison of Two Modelling Paradigms in the Semantic Web. SSRN Electronic Journal,	1	2
2	Modular Materialisation of Datalog Programs. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> ,33, 2859-2866	5	2
1	A Novel Approach to Ontology Classification. SSRN Electronic Journal,	1	2