
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3681462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frailty and quality of life after invasive management for non-ST elevation acute coronary syndrome. Heart, 2022, 108, 203-211.	2.9	9
2	Feasibility of the cardiac output response to stress test in suspected heart failure patients. Family Practice, 2022, , .	1.9	1
3	Disease Progression of Hypertrophic Cardiomyopathy: Modeling Using Machine Learning. JMIR Medical Informatics, 2022, 10, e30483.	2.6	5
4	Does infection predispose to thrombosis during longâ€ŧerm ventricular assist device support?. Artificial Organs, 2022, , .	1.9	4
5	Ventricular assist devices in transposition and failing systemic right ventricle: role of tricuspid valve replacement. European Journal of Cardio-thoracic Surgery, 2022, 62, .	1.4	5
6	Gender differences in the assessment, decision making and outcomes for ventricular assist devices and heart transplantation: An analysis from a UK transplant centre. Clinical Transplantation, 2022, , e14666.	1.6	2
7	Peak atrio-ventricular mechanics predicts exercise tolerance in heart failure patients. International Journal of Cardiology, 2022, 359, 84-90.	1.7	3
8	Ex situ heart perfusion: The past, the present, and the future. Journal of Heart and Lung Transplantation, 2021, 40, 69-86.	0.6	23
9	Validity of Hemodynamic Monitoring Using Inert Gas Rebreathing Method in Patients With Chronic Heart Failure and Those Implanted With a Left Ventricular Assist Device. Journal of Cardiac Failure, 2021, 27, 414-418.	1.7	0
10	Using existing technology better: Improving outcomes with the HeartWare left ventricular assist device. International Journal of Cardiology, 2021, 331, 35-39.	1.7	2
11	The effect of age on mechanisms of exercise tolerance: Reduced arteriovenous oxygen difference causes lower oxygen consumption in older people. Experimental Gerontology, 2021, 149, 111340.	2.8	5
12	A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy. Computers in Biology and Medicine, 2021, 135, 104648.	7.0	27
13	Prognostic Value of Peak Oxygen Uptake in Patients Supported With Left Ventricular Assist Devices (PRO-VAD). JACC: Heart Failure, 2021, 9, 758-767.	4.1	20
14	Markers of Right Ventricular Dysfunction Predict Maximal Exercise Capacity After Left Ventricular Assist Device Implantation. ASAIO Journal, 2021, 67, 284-289.	1.6	4
15	Initial conservative management strategy of HeartWare left ventricular assist device thrombosis with intravenous heparin or bivalirudin. International Journal of Artificial Organs, 2020, 43, 444-451.	1.4	5
16	Neutrophil to Lymphocyte Ratio Is Related to Thrombotic Complications and Survival in Continuous Flow Left Ventricular Assist Devices. ASAIO Journal, 2020, 66, 199-204.	1.6	8
17	Overcoming barriers to engagement and adherence to a home-based physical activity intervention for patients with heart failure: a qualitative focus group study. BMJ Open, 2020, 10, e036382.	1.9	22
18	What are the Physiological Benefits of Increased Daily Number of Steps in Middle-Aged Women?. American Journal of the Medical Sciences, 2020, 360, 591-595.	1.1	0

#	Article	IF	CITATIONS
19	Comparison of cardiac output estimates by echocardiography and bioreactance at rest and peak dobutamine stress test in heart failure patients with preserved ejection fraction. Echocardiography, 2020, 37, 1603-1609.	0.9	0
20	The introduction of a super-urgent heart allocation scheme in the UK: A 2-year review. Journal of Heart and Lung Transplantation, 2020, 39, 1109-1117.	0.6	11
21	Left Ventricular Filling Pressures Contribute to Exercise Limitation in Patients with Continuous Flow Left Ventricular Assist Devices. ASAIO Journal, 2020, 66, 247-252.	1.6	6
22	Patient survival and therapeutic outcome in the UK bridge to transplant left ventricular assist device population. Heart, 2019, 105, 291-296.	2.9	11
23	238th ENMC International Workshop: Updating management recommendations of cardiac dystrophinopathyHoofddorp, The Netherlands, 30 November - 2 December 2018. Neuromuscular Disorders, 2019, 29, 634-643.	0.6	6
24	The role of exercise hemodynamics in assessing patients with chronic heart failure and left ventricular assist devices. Expert Review of Medical Devices, 2019, 16, 891-898.	2.8	4
25	Effects of drug abuse, smoking and alcohol on donor hearts and lungs. Transplant International, 2019, 32, 1019-1027.	1.6	9
26	Opportunities and challenges of a novel cardiac output response to stress (CORS) test to enhance diagnosis of heart failure in primary care: qualitative study. BMJ Open, 2019, 9, e028122.	1.9	3
27	Association between heart rate variability and haemodynamic response to exercise in chronic heart failure. Scandinavian Cardiovascular Journal, 2019, 53, 77-82.	1.2	4
28	NTâ€proBNP is a weak indicator of cardiac function and haemodynamic response to exercise in chronic heart failure. ESC Heart Failure, 2019, 6, 449-454.	3.1	8
29	Exercise Hemodynamics to Evaluate the Breathless Patient: Defining the Normal Pulmonary Arterial Wedge Pressure. Journal of Cardiac Failure, 2019, 25, 123-124.	1.7	0
30	127â \in Developmental rock downregulation disrupts sarcomeric structure resulting in the development of hypertrophic cardiomyopathy. , 2019, , .		0
31	Outcome following heart transplant assessment in adults with congenital heart disease. Heart, 2019, 105, 1741-1747.	2.9	31
32	Cardiac function is not associated with glucose control in older women. Experimental Gerontology, 2019, 116, 31-36.	2.8	0
33	Unsupervised high-intensity interval training improves glycaemic control but not cardiovascular autonomic function in type 2 diabetes patients: A randomised controlled trial. Diabetes and Vascular Disease Research, 2019, 16, 69-76.	2.0	26
34	Reproducibility of Inert Gas Rebreathing Method to Estimate Cardiac Output at Rest and During Cardiopulmonary Exercise Stress Testing. International Journal of Sports Medicine, 2019, 40, 125-132.	1.7	5
35	Impact of donor variables on heart transplantation outcomes in mechanically bridged versus standard recipientsâ€. Interactive Cardiovascular and Thoracic Surgery, 2019, 28, 455-464.	1.1	6
36	Disruption of embryonic ROCK signaling reproduces the sarcomeric phenotype of hypertrophic cardiomyopathy. JCI Insight, 2019, 4, .	5.0	9

#	Article	IF	CITATIONS
37	Acceptability, Feasibility and Preliminary Evaluation of a Novel, Personalised, Home-Based Physical Activity Intervention for Chronic Heart Failure (Active-at-Home-HF): a Pilot Study. Sports Medicine - Open, 2019, 5, 45.	3.1	11
38	â€~We're like a gang, we stick together': experiences of ventricular assist device communities. European Journal of Cardiovascular Nursing, 2018, 17, 399-407.	0.9	3
39	Impact of age on the association between cardiac high-energy phosphate metabolism and cardiac power in women. Heart, 2018, 104, 111-118.	2.9	15
40	Comparison of cardiac output estimates by bioreactance and inert gas rebreathing methods during cardiopulmonary exercise testing. Clinical Physiology and Functional Imaging, 2018, 38, 483-490.	1.2	11
41	First-in-man use of the MVAD axial-flow pump: Long-term outcome. Journal of Heart and Lung Transplantation, 2018, 37, 933-936.	0.6	6
42	A novel cardiac output response to stress test developed to improve diagnosis and monitoring of heart failure in primary care. ESC Heart Failure, 2018, 5, 703-712.	3.1	11
43	Donor and recipient risk factor analysis of inferior postheart transplantation outcome in the era of durable mechanical assist devices. Clinical Transplantation, 2018, 32, e13390.	1.6	5
44	Peptide-conjugated phosphodiamidate oligomer-mediated exon skipping has benefits for cardiac function in mdx and Cmah-/-mdx mouse models of Duchenne muscular dystrophy. PLoS ONE, 2018, 13, e0198897.	2.5	19
45	Diffusion Tensor Magnetic Resonance Imaging of the Heart. Journal of the American College of Cardiology, 2017, 69, 677-678.	2.8	9
46	Left Ventricular Assist Device as a BridgeÂto Recovery for Patients With Advanced Heart Failure. Journal of the American College of Cardiology, 2017, 69, 1924-1933.	2.8	96
47	Myocardial Recovery Strategy with Decommissioning for the HeartWare Left Ventricular Assist Device. ASAIO Journal, 2017, 63, 299-304.	1.6	24
48	â€ [~] Being' a ventricular assist device recipient: A liminal existence. Social Science and Medicine, 2017, 190, 141-148.	3.8	21
49	Pathophysiology of exercise intolerance in chronic diseases: the role of diminished cardiac performance in mitochondrial and heart failure patients. Open Heart, 2017, 4, e000632.	2.3	19
50	Impact of aortic valve closure on adverse events and outcomes with the HeartWare ventricular assist device. Journal of Heart and Lung Transplantation, 2017, 36, 42-49.	0.6	25
51	55â€High serum parathyroid hormone levels are not associated with endothelial function, vascular stiffness or early adverse outcomes after invasive management of non-st elevation myocardial infarction in high-risk older patients. Heart, 2017, 103, A43.1-A43.	2.9	0
52	Elevated brain natriuretic peptide levels in chronic fatigue syndrome associate with cardiac dysfunction: a case control study. Open Heart, 2017, 4, e000697.	2.3	3
53	57â€Serum total vitamin d levels are not associated with endothelial dysfunction, vascular stiffness or early adverse outcomes after invasive management of non-st elevation acute coronary syndrome in older patients. Heart, 2017, 103, A44.1-A44.	2.9	0
54	Left ventricular functional, structural and energetic effects of normal aging: Comparison with hypertension. PLoS ONE, 2017, 12, e0177404.	2.5	12

#	Article	IF	CITATIONS
55	Age-related decline in cardiac autonomic function is not attenuated with increased physical activity. Oncotarget, 2016, 7, 76390-76397.	1.8	7
56	Pregnancy in cardiac transplant recipients. Clinical Transplantation, 2016, 30, 1059-1065.	1.6	29
57	The Challenge of Radiation-Induced Restrictive Cardiomyopathy and Outcomes After Heart Transplantation. Journal of Cardiac Failure, 2016, 22, 479-480.	1.7	4
58	Normal age-related changes in left ventricular function: Role of afterload and subendocardial dysfunction. International Journal of Cardiology, 2016, 223, 306-312.	1.7	30
59	Reduced cardiac volumes in chronic fatigue syndrome associate with plasma volume but not length of disease: a cohort study. Open Heart, 2016, 3, e000381.	2.3	14
60	The effect of age on the relationship between cardiac and vascular function. Mechanisms of Ageing and Development, 2016, 153, 1-6.	4.6	35
61	An Extended Role of Continuous Flow Device in Pediatric Mechanical Circulatory Support. Annals of Thoracic Surgery, 2016, 102, 620-627.	1.3	24
62	Development of de novo aortic valve incompetence in patients with the continuous-flow HeartWare ventricular assist device. Journal of Heart and Lung Transplantation, 2016, 35, 312-319.	0.6	25
63	Measurement of pulse wave velocity in normal ageing: comparison of Vicorder and magnetic resonance phase contrast imaging. BMC Cardiovascular Disorders, 2016, 16, 50.	1.7	27
64	Absence of Cardiac Benefit with Early Combination ACE Inhibitor and Beta Blocker Treatment in mdx Mice. Journal of Cardiovascular Translational Research, 2015, 8, 198-207.	2.4	11
65	Assessment of ventricular function in mouse models of muscular dystrophy: A comparison of MRI with conductance catheter. Neuromuscular Disorders, 2015, 25, 24-31.	0.6	2
66	Cardiac structure and function are altered in type 2 diabetes and Non-alcoholic fatty liver disease and associate with glycemic control. Cardiovascular Diabetology, 2015, 14, 23.	6.8	37
67	Effect of Physical Activity on Age-Related Changes in Cardiac Function and Performance in Women. Circulation: Cardiovascular Imaging, 2015, 8, .	2.6	27
68	Considerations for patients awaiting heart transplantation-Insights from the UK experience. Journal of Thoracic Disease, 2015, 7, 527-31.	1.4	6
69	Durable Ventricular Assist Device Support for Failing Systemic Morphologic Right Ventricle: EarlyÂResults. Annals of Thoracic Surgery, 2014, 98, 2122-2129.	1.3	43
70	Bioimpedance and bioreactance methods for monitoring cardiac output. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2014, 28, 381-394.	4.0	56
71	Four-year outcomes with third-generation centrifugal left ventricular assist devices in an era of restricted transplantation. European Journal of Cardio-thoracic Surgery, 2014, 46, e35-e40.	1.4	14
72	Organ Allocation Around the World: Insights From the ISHLT International Registry for Heart and Lung Transplantation. Journal of Heart and Lung Transplantation, 2014, 33, 975-984.	0.6	38

#	Article	IF	CITATIONS
73	Effect of Left Ventricular Assist Device Implantation and Heart Transplantation on Habitual Physical Activity and Quality of Life. American Journal of Cardiology, 2014, 114, 88-93.	1.6	65
74	Hemodynamic, Echocardiographic, and Exerciseâ€Related Effects of the HeartWare Left Ventricular Assist Device in Advanced Heart Failure. Congestive Heart Failure, 2013, 19, 11-15.	2.0	24
75	Heterogeneous abnormalities of in-vivo left ventricular calcium influx and function in mouse models of muscular dystrophy cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 4.	3.3	14
76	Editorial Comment: Ventricular assist devices for advanced heart failure: evidence that cannot be ignored. European Journal of Cardio-thoracic Surgery, 2013, 43, 1242-1243.	1.4	3
77	Trends in long-term mechanical circulatory support for advanced heart failure in the UK. European Journal of Heart Failure, 2013, 15, 1185-1193.	7.1	29
78	Subepicardial dysfunction leads to global left ventricular systolic impairment in patients with limb girdle muscular dystrophy 21. European Journal of Heart Failure, 2013, 15, 986-994.	7.1	18
79	Beta-Blockers, Left and Right Ventricular Function, and In-Vivo Calcium Influx in Muscular Dystrophy Cardiomyopathy. PLoS ONE, 2013, 8, e57260.	2.5	18
80	Left ventricular torsion, energetics, and diastolic function in normal human aging. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H885-H892.	3.2	62
81	Right heart failure after left ventricular assist device implantation. Current Opinion in Cardiology, 2012, 27, 296-300.	1.8	51
82	Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle. American Journal of Pathology, 2011, 178, 273-283.	3.8	29
83	The decline in heart transplantation in the UK. BMJ: British Medical Journal, 2011, 342, d2483-d2483.	2.3	33
84	Impaired cardiovascular function in primary biliary cirrhosis. American Journal of Physiology - Renal Physiology, 2010, 298, G764-G773.	3.4	57
85	Intolerance to βâ€blockade in a mouse model of δâ€sarcoglycanâ€deficient muscular dystrophy cardiomyopathy. European Journal of Heart Failure, 2010, 12, 1163-1170.	7.1	14
86	Attenuation of adverse cardiac effects in prednisolone-treated δ-sarcoglycan-deficient mice by mineralocorticoid-receptor-antagonism. Neuromuscular Disorders, 2010, 20, 21-28.	0.6	10
87	Contrasting effects of steroids and angiotensinâ€convertingâ€enzyme inhibitors in a mouse model of dystrophinâ€deficient cardiomyopathy. European Journal of Heart Failure, 2009, 11, 463-471.	7.1	61
88	Dynamic Analysis of Exercise Oxygen Consumption Predicts Outcomes in Advanced Heart Failure. Congestive Heart Failure, 2007, 13, 313-318.	2.0	3
89	Pressure-calcium relationships in perfused mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2614-H2624.	3.2	14
90	The Myofilament Force-Calcium Relationship as a Target for Positive Inotropic Therapy in Congestive Heart Failure. Cardiovascular Drugs and Therapy, 2005, 19, 203-210.	2.6	12

GUY A MACGOWAN

#	Article	IF	CITATIONS
91	In vivo α-adrenergic responses and troponin I phosphorylation: anesthesia interactions. Journal of Applied Physiology, 2005, 98, 1163-1170.	2.5	10
92	Troponin I protein kinase C phosphorylation sites and ventricular function. Cardiovascular Research, 2004, 63, 245-255.	3.8	22
93	Impact of β-blocker therapy on functional capacity criteria for heart transplant listing. Journal of Heart and Lung Transplantation, 2003, 22, 78-86.	0.6	48
94	Ischemic dysfunction in transgenic mice expressing troponin I lacking protein kinase C phosphorylation sites. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H835-H843.	3.2	45
95	Compensatory changes in Ca2+ and myocardial O2 consumption in β-tropomyosin transgenic hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2539-H2548.	3.2	8
96	High calcium and dobutamine positive inotropy in the perfused mouse heart: myofilament calcium responsiveness, energetic economy, and effects of protein kinase C inhibition. BMC Physiology, 2001, 1, 12.	3.6	5
97	Manganese-enhanced MRI of mouse heart during changes in inotropy. Magnetic Resonance in Medicine, 2001, 46, 884-890.	3.0	121
98	Inotropic and energetic effects of altering the force-calcium relationship: Mechanisms, experimental results, and potential molecular targets. Journal of Cardiac Failure, 2000, 6, 144-156.	1.7	11
99	Comparison of the Effects of ORG 30029, Dobutamine and High Perfusate Calcium on Function and Metabolism in Rat Heart. Journal of Molecular and Cellular Cardiology, 1998, 30, 2605-2612.	1.9	9
100	Noninvasive Measurement of Shortening in the Fiber and Cross-Fiber Directions in the Normal Human Left Ventricle and in Idiopathic Dilated Cardiomyopathy. Circulation, 1997, 96, 535-541.	1.6	179