Chengzhu Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3681169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode. Electrochimica Acta, 2014, 118, 169-175.	5.2	141
2	308 nm Photolysis of Nitric Acid in the Gas Phase, on Aluminum Surfaces, and on Ice Films. Journal of Physical Chemistry A, 2010, 114, 2561-2568.	2.5	63
3	Radical chemistry of diethyl phthalate oxidation via UV/peroxymonosulfate process: Roles of primary and secondary radicals. Chemical Engineering Journal, 2020, 379, 122339.	12.7	61
4	Photochemical reactions between 1,4-benzoquinone and O2•â^'. Environmental Science and Pollution Research, 2020, 27, 31289-31299.	5.3	51
5	Removal of gaseous carbon bisulfide using dielectric barrier discharge plasmas combined with TiO2 coated attapulgite catalyst. Chemical Engineering Journal, 2013, 225, 567-573.	12.7	44
6	Co3O4/α-Fe2O3 catalyzed oxidative degradation of gaseous benzene: Preparation, characterization and its catalytic properties. Solid State Sciences, 2019, 93, 79-86.	3.2	30
7	Catalytic degradation of gaseous benzene by using TiO2/goethite immobilized on palygorskite: Preparation, characterization and mechanism. Solid State Sciences, 2015, 49, 1-9.	3.2	27
8	BiVO4/α-Fe2O3 catalytic degradation of gaseous benzene: Preparation, characterization and photocatalytic properties. Applied Surface Science, 2018, 427, 141-147.	6.1	25
9	Photocatalytic degradation of gaseous benzene with H3PW12O40/TiO2/palygorskite composite catalyst. Journal of Saudi Chemical Society, 2017, 21, 132-142.	5.2	24
10	Biomaterials cross-linked graphene oxide composite aerogel with a macro–nanoporous network structure for efficient Cr (VI) removal. International Journal of Biological Macromolecules, 2020, 156, 1337-1346.	7.5	22
11	α-Fe 2 O 3 supported Bi 2 WO 6 for photocatalytic degradation of gaseous benzene. Solid State Sciences, 2017, 71, 14-21.	3.2	17
12	Synthesis of manganese ore/Co3O4 composites by sol–gel method for the catalytic oxidation of gaseous chlorobenzene. Journal of Saudi Chemical Society, 2021, 25, 101229.	5.2	17
13	Photochemical reactions between superoxide ions and 2,4,6-trichlorophenol in atmospheric aqueous environments. Chemosphere, 2021, 279, 130537.	8.2	17
14	Removal of Carbon Disulfide from Gas Streams Using Dielectric Barrier Discharge Plasma Coupled with MnO2 Catalysis System. Plasma Chemistry and Plasma Processing, 2013, 33, 569-579.	2.4	15
15	Photochemical reaction between triclosan and nitrous acid in the atmospheric aqueous environment. Atmospheric Environment, 2017, 157, 38-48.	4.1	14
16	Photolysis of Glycolaldehyde in the 280â^'340 nm Region. Journal of Physical Chemistry A, 2010, 114, 8384-8390.	2.5	13
17	Performance of selective catalytic reduction of NO with NH ₃ over natural manganese ore catalysts at low temperature. Environmental Technology (United Kingdom), 2018, 39, 317-326.	2.2	13
18	Photochemical reaction kinetics and mechanisms of diethyl phthalate with N (III) in the atmospheric aqueous environment. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 362, 21-30.	3.9	12

Снемсини Ини

#	Article	IF	CITATIONS
19	Photocatalytic degradation of gaseous benzene with Bi2WO6/Palygorskite composite catalyst. Solid State Sciences, 2019, 90, 76-85.	3.2	12
20	Decomposition of Ethanethiol Using Dielectric Barrier Discharge Combined with 185Ânm UV-Light Technique. Plasma Chemistry and Plasma Processing, 2015, 35, 355-364.	2.4	11
21	Simultaneous removal of nitrogen and phosphorus using autoclaved aerated concrete particles in biological aerated filters. Desalination and Water Treatment, 2016, 57, 19402-19410.	1.0	11
22	Photochemical reaction between biphenyl and N(III) in the atmospheric aqueous phase. Chemosphere, 2017, 167, 462-468.	8.2	11
23	V2O5/hematite catalyst for low temperature selective catalytic reduction of NOx with NH3. Chinese Journal of Catalysis, 2014, 35, 99-107.	14.0	10
24	Kinetics analysis of interfacial electron-transfer processes in goethite suspensions systems. Chemosphere, 2017, 188, 667-676.	8.2	9
25	Decomposition of gaseous chlorobenzene using a DBD combined CuO/ <i>α</i> -Fe ₂ O ₃ catalysis system. Environmental Technology (United) Tj ETQq1	1 0 <i>2</i> 7 8 4314	4 r g BT /Over
26	ADSORPTION OF PHOSPHATE FROM AQUEOUS SOLUTIONS BY THERMALLY MODIFIED PALYGORSKITE. Environmental Engineering and Management Journal, 2013, 12, 1393-1399.	0.6	9
27	Electrocatalytic degradation of bisphenol a in aqueous solution using β-PbO2/Ti as anode. Russian Journal of Electrochemistry, 2015, 51, 353-361.	0.9	8
28	Photochemical transformation of dimethyl phthalate (DMP) with N(iii)(H2ONO+/HONO/NO2â^') in the atmospheric aqueous environment. Photochemical and Photobiological Sciences, 2018, 17, 332-341.	2.9	8
29	Photochemical oxidation of di-n-butyl phthalate in atmospheric hydrometeors by hydroxyl radicals from nitrous acid. Environmental Science and Pollution Research, 2018, 25, 31091-31100.	5.3	8
30	Catalytic removal of gaseous styrene using DBD combined with NiO/Pyrite composite. Solid State Sciences, 2020, 102, 106167.	3.2	8
31	Photochemical reaction kinetics and mechanistic investigations of nitrous acid with sulfamethazine in tropospheric water. Environmental Science and Pollution Research, 2019, 26, 26134-26145.	5.3	7
32	Photochemical transformations of 2, 6-dichlorophenol and 2-chlorophenol with superoxide ions in the atmospheric aqueous phase. Journal of Molecular Structure, 2022, 1261, 132910.	3.6	7
33	Ce(SO4)2/α-Fe2O3 selective catalytic reduction of NOx with NH3: preparation, characterization, and performance. Environmental Science and Pollution Research, 2022, 29, 84421-84433.	5.3	7
34	308nm photochemical reaction of gaseous HNO3 and benzene on α-Fe2O3 surfaces. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, 31-37.	3.9	4
35	Effect of MnOx/α-Fe2O3 Prepared from Goethite on Selective Catalytic Reduction of NO with NH3. Journal of Chemistry, 2022, 2022, 1-13.	1.9	4
36	Photodissociation of peroxynitric acid (HO 2 NO 2) aqueous solution at 266 nm. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 342, 35-41.	3.9	3

Снемсини Ини

#	Article	IF	CITATIONS
37	Photochemical reaction kinetics and mechanism of bisphenol A with K ₂ S ₂ O ₈ in aqueous solution: a laser flash photolysis study. Canadian Journal of Chemistry, 2021, 99, 43-50.	1.1	3
38	Reply to "Comment on '308 nm Photolysis of Nitric Acid in the Gas Phase, on Aluminum Surfaces, and on Ice Films'― Journal of Physical Chemistry A, 2012, 116, 10465-10466.	2.5	1
39	Photochemical oxidation of o-dichlorobenzene in aqueous solution by hydroxyl radicals from nitrous acid. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 420, 113503.	3.9	1
40	Development of bacterial resistance induced by low concentration of two-dimensional black phosphorus <i>via</i> mutagenesis. RSC Advances, 2022, 12, 16071-16078.	3.6	1
41	Removal of Ethanethiol Gas by Iron Oxide Porous Ceramsite Biotrickling Filter. Journal of Chemistry, 2015, 2015, 1-9.	1.9	0
42	Photochemical reaction of superoxide radicals with 1-naphthol. Canadian Journal of Chemistry, 0, , 1-7.	1.1	0