Xifeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3681052/publications.pdf

Version: 2024-02-01

		279798	315739
49	1,574 citations	23	38
papers	citations	h-index	g-index
53	53	53	2381
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Scaffold-Free Spheroids with Two-Dimensional Heteronano-Layers (2DHNL) Enabling Stem Cell and Osteogenic Factor Codelivery for Bone Repair. ACS Nano, 2022, 16, 2741-2755.	14.6	21
2	Sizeâ€dependent osteogenesis of black phosphorus in nanocomposite hydrogel scaffolds. Journal of Biomedical Materials Research - Part A, 2022, 110, 1488-1498.	4.0	6
3	Zinc-doped hydroxyapatite and poly(propylene fumarate) nanocomposite scaffold for bone tissue engineering. Journal of Materials Science, 2022, 57, 5998-6012.	3.7	4
4	Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials, 2022, 284, 121507.	11.4	14
5	Injectable pH-responsive adhesive hydrogels for bone tissue engineering inspired by the underwater attachment strategy of marine mussels. Materials Science and Engineering C, 2022, 133, 112606.	7.3	5
6	Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. Polymer Reviews, 2021, 61, 319-356.	10.9	14
7	<scp>3D</scp> bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 6-17.	4.0	22
8	2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomaterials Science, 2021, 9, 2768-2803.	5.4	29
9	Mesenchymal stem cell spheroids incorporated with collagen and black phosphorus promote osteogenesis of biodegradable hydrogels. Materials Science and Engineering C, 2021, 121, 111812.	7.3	15
10	Black phosphorus incorporation modulates nanocomposite hydrogel properties and subsequent <scp>MC3T3</scp> cell attachment, proliferation, and differentiation. Journal of Biomedical Materials Research - Part A, 2021, 109, 1633-1645.	4.0	8
11	Bifunctional hydrogel for potential vascularized bone tissue regeneration. Materials Science and Engineering C, 2021, 124, 112075.	7.3	13
12	Spatial and uniform deposition of cell-laden constructs on 3D printed composite phosphorylated hydrogels for improved osteoblast responses. Journal of Materials Science, 2021, 56, 17768-17784.	3.7	4
13	SDF-1α/OPF/BP Composites Enhance the Migrating and Osteogenic Abilities of Mesenchymal Stem Cells. Stem Cells International, 2021, 2021, 1-12.	2.5	4
14	Injectable catalyst-free "click―organic-inorganic nanohybrid (click-ON) cement for minimally invasive in vivo bone repair. Biomaterials, 2021, 276, 121014.	11.4	18
15	Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. Journal of Biomedical Materials Research - Part A, 2021, 109, 193-206.	4.0	33
16	Phosphate functionalization and enzymatic calcium mineralization synergistically enhance oligo[poly(ethylene glycol) fumarate] hydrogel osteoconductivity for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2020, 108, 515-527.	4.0	17
17	OPF/PMMA Cage System as an Alternative Approach for the Treatment of Vertebral Corpectomy. Applied Sciences (Switzerland), 2020, 10, 6912.	2.5	1
18	Injectable Electrical Conductive and Phosphate Releasing Gel with Two-Dimensional Black Phosphorus and Carbon Nanotubes for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 4653-4665.	5.2	46

#	Article	IF	Citations
19	3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization. Acta Biomaterialia, 2020, 111, 129-140.	8.3	69
20	Injectable Catalyst-Free Poly(Propylene Fumarate) System Cross-Linked by Strain Promoted Alkyne–Azide Cycloaddition Click Chemistry for Spine Defect Filling. Biomacromolecules, 2019, 20, 3352-3365.	5.4	18
21	Rapid conjugation of nanoparticles, proteins and siRNAs to microbubbles by strain-promoted click chemistry for ultrasound imaging and drug delivery. Polymer Chemistry, 2019, 10, 705-717.	3.9	15
22	Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23558-23572.	8.0	101
23	Strontiumâ€substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. Journal of Biomedical Materials Research - Part A, 2019, 107, 631-642.	4.0	22
24	Effect of Biomaterial Electrical Charge on Bone Morphogenetic Protein-2-Induced <i>In Vivo</i> Bone Formation. Tissue Engineering - Part A, 2019, 25, 1037-1052.	3.1	15
25	Composite Hydrogel Embedded with Porous Microspheres for Long-Term pH-Sensitive Drug Delivery. Tissue Engineering - Part A, 2019, 25, 172-182.	3.1	8
26	Bone morphogenetic protein-2 release profile modulates bone formation in phosphorylated hydrogel. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1339-1351.	2.7	26
27	Fast functionalization of ultrasound microbubbles using strain promoted click chemistry. Biomaterials Science, 2018, 6, 623-632.	5.4	18
28	Crossâ€linkable graphene oxide embedded nanocomposite hydrogel with enhanced mechanics and cytocompatibility for tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 1247-1257.	4.0	10
29	Threeâ€dimensional porous poly(propylene fumarate)â€ <i>co</i> â€poly(lacticâ€ <i>co</i> â€glycolic acid) scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 2507-2517.	4.0	8
30	Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydrate Polymers, 2018, 192, 308-316.	10.2	87
31	Phosphate Functional Groups Improve Oligo[(Polyethylene Glycol) Fumarate] Osteoconduction and BMP-2 Osteoinductive Efficacy. Tissue Engineering - Part A, 2018, 24, 819-829.	3.1	23
32	Electrically conductive nanocomposite hydrogels embedded with functionalized carbon nanotubes for spinal cord injury. New Journal of Chemistry, 2018, 42, 17671-17681.	2.8	63
33	Poly(Propylene Fumarate)–Hydroxyapatite Nanocomposite Can Be a Suitable Candidate for Cervical Cages. Journal of Biomechanical Engineering, 2018, 140, .	1.3	11
34	Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomaterials Science, 2018, 6, 2375-2385.	5.4	73
35	Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14677-14690.	8.0	179
36	A New Vertebral Body Replacement Strategy Using Expandable Polymeric Cages. Tissue Engineering - Part A, 2017, 23, 223-232.	3.1	12

#	Article	IF	Citations
37	Novel porous poly(propylene fumarateâ€coâ€caprolactone) scaffolds fabricated by thermally induced phase separation. Journal of Biomedical Materials Research - Part A, 2017, 105, 226-235.	4.0	18
38	Covalent crosslinking of graphene oxide and carbon nanotube into hydrogels enhances nerve cell responses. Journal of Materials Chemistry B, 2016, 4, 6930-6941.	5.8	63
39	Poly(ε-caprolactone) Dendrimer Cross-Linked via Metal-Free Click Chemistry: Injectable Hydrophobic Platform for Tissue Engineering. ACS Macro Letters, 2016, 5, 1261-1265.	4.8	35
40	Expansile crosslinked polymersomes for pH sensitive delivery of doxorubicin. Biomaterials Science, 2016, 4, 245-249.	5.4	26
41	Novel biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications. RSC Advances, 2015, 5, 21301-21309.	3.6	32
42	Tunable tissue scaffolds fabricated by in situ crosslink in phase separation system. RSC Advances, 2015, 5, 100824-100833.	3.6	24
43	Elastic and thermodynamic properties of Mo2C polymorphs from first principles calculations. Ceramics International, 2015, 41, 5239-5246.	4.8	26
44	Biodegradable and crosslinkable PPF–PLGA–PEG self-assembled nanoparticles dual-decorated with folic acid ligands and Rhodamine B fluorescent probes for targeted cancer imaging. RSC Advances, 2015, 5, 33275-33282.	3.6	31
45	Roles of Hydroxyapatite Allocation and Microgroove Dimension in Promoting Preosteoblastic Cell Functions on Photocured Polymer Nanocomposites through Nuclear Distribution and Alignment. Langmuir, 2015, 31, 2851-2860.	3.5	29
46	Facile synthesis of gold nanorods/hydrogels core/shell nanospheres for pH and near-infrared-light induced release of 5-fluorouracil and chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2015, 128, 498-505.	5.0	42
47	Hydrolysable core crosslinked particles for receptor-mediated pH-sensitive anticancer drug delivery. New Journal of Chemistry, 2015, 39, 8840-8847.	2.8	12
48	Enhanced bone cell functions on poly ($\hat{l}\mu$ -caprolactone) triacrylate networks grafted with polyhedral oligomeric silsesquioxane nanocages. Polymer, 2014, 55, 3836-3845.	3.8	26
49	Tissue Engineering, Cardiovascular: Biodegradable Polymers. , 0, , 7957-7971.		3