Sören J Backhaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3680580/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding and Improving Risk Assessment After Myocardial Infarction Using Automated Left Ventricular ShapeÂAnalysis. JACC: Cardiovascular Imaging, 2022, 15, 1563-1574.	2.3	21
2	Artificial Intelligence Enabled Fully Automated CMR Function Quantification for Optimized Risk Stratification in Patients Undergoing Transcatheter Aortic Valve Replacement. Journal of Interventional Cardiology, 2022, 2022, 1-9.	0.5	5
3	Functional and prognostic implications of cardiac magnetic resonance feature tracking-derived remote myocardial strain analyses in patients following acute myocardial infarction. Clinical Research in Cardiology, 2021, 110, 270-280.	1.5	12
4	Headâ€ŧoâ€head comparison of cardiovascular MR feature tracking cine versus acquisitionâ€based deformation strain imaging using myocardial tagging and strain encoding. Magnetic Resonance in Medicine, 2021, 85, 357-368.	1.9	26
5	Frequency and prognostic impact of right ventricular involvement in acute myocardial infarction. Heart, 2021, 107, 563-570.	1.2	6
6	Exercise Stress Real-Time Cardiac Magnetic Resonance Imaging for Noninvasive Characterization of Heart Failure With Preserved Ejection Fraction. Circulation, 2021, 143, 1484-1498.	1.6	69
7	Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 60.	1.6	21
8	Impact of fully automated assessment on interstudy reproducibility of biventricular volumes and function in cardiac magnetic resonance imaging. Scientific Reports, 2021, 11, 11648.	1.6	7
9	Culprit vessel-related myocardial mechanics and prognostic implications following acute myocardial infarction. Clinical Research in Cardiology, 2020, 109, 339-349.	1.5	25
10	Atrioventricular mechanical coupling and major adverse cardiac events in female patients following acute ST elevation myocardial infarction. International Journal of Cardiology, 2020, 299, 31-36.	0.8	9
11	Fully Automated Cardiac Assessment for Diagnostic and Prognostic Stratification Following Myocardial Infarction. Journal of the American Heart Association, 2020, 9, e016612.	1.6	19
12	Prognostic Value of Different CMR-Based Techniques to Assess Left Ventricular Myocardial Strain in Takotsubo Syndrome. Journal of Clinical Medicine, 2020, 9, 3882.	1.0	13
13	Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment After Acute Myocardial Infarction in Patients With Type 2 Diabetes. Diabetes, 2020, 69, 1540-1548.	0.3	13
14	Real-time cardiovascular magnetic resonance T1 and extracellular volume fraction mapping for tissue characterisation in aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 46.	1.6	18
15	Impact of Right Atrial Physiology on Heart Failure and Adverse Events after Myocardial Infarction. Journal of Clinical Medicine, 2020, 9, 210.	1.0	22
16	Cardiac Magnetic Resonance Left Ventricular Mechanical Uniformity Alterations for Risk Assessment After Acute Myocardial Infarction. Journal of the American Heart Association, 2019, 8, e011576.	1.6	5
17	Left Atrial Function with MRI Enables Prediction of Cardiovascular Events after Myocardial Infarction: Insights from the AIDA STEMI and TATORT NSTEMI Trials. Radiology, 2019, 293, 292-302.	3.6	56
18	Cardiovascular magnetic resonance imaging feature tracking: Impact of training on observer performance and reproducibility. PLoS ONE, 2019, 14, e0210127.	1.1	27

SöREN J BACKHAUS

#	Article	IF	CITATIONS
19	Fast manual long-axis strain assessment provides optimized cardiovascular event prediction following myocardial infarction. European Heart Journal Cardiovascular Imaging, 2019, 20, 1262-1270.	0.5	22
20	Fully automated quantification of biventricular volumes and function in cardiovascular magnetic resonance: applicability to clinical routine settings. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 24.	1.6	31
21	Strain-encoded cardiac magnetic resonance imaging: a new approach for fast estimation of left ventricular function. BMC Cardiovascular Disorders, 2019, 19, 52.	0.7	24
22	Atrial mechanics and their prognostic impact in Takotsubo syndrome: a cardiovascular magnetic resonance imaging study. European Heart Journal Cardiovascular Imaging, 2019, 20, 1059-1069.	0.5	25
23	Reverse left ventricular structural remodeling after catheter ablation of atrial fibrillation in patients with preserved left ventricular function: Insights from cardiovascular magnetic resonance native T1 mapping. Heart Rhythm, 2019, 16, 424-432.	0.3	25
24	Temporal changes within mechanical dyssynchrony and rotational mechanics in Takotsubo syndrome: A cardiovascular magnetic resonance imaging study. International Journal of Cardiology, 2018, 273, 256-262.	0.8	17
25	Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Scientific Reports, 2018, 8, 14100.	1.6	60
26	Prognostic utility of global longitudinal strain in myocardial infarction. World Journal of Cardiology, 2018, 10, 35-37.	0.5	4
27	Surfactant inhibits ATP-induced release of interleukin-1β via nicotinic acetylcholine receptors. Journal of Lipid Research, 2017, 58, 1055-1066.	2.0	29