Gary Loughran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3680543/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluating ribosomal frameshifting in CCR5 mRNA decoding. Nature, 2022, 604, E16-E23.	27.8	18
2	Non-AUG translation initiation in mammals. Genome Biology, 2022, 23, 111.	8.8	25
3	Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science, 2021, 372, 1306-1313.	12.6	165
4	From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses, 2021, 13, 1251.	3.3	3
5	Tissue-specific dynamic codon redefinition in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
6	Unusually efficient CUG initiation of an overlapping reading frame in <i>POLG</i> mRNA yields novel protein POLGARF. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24936-24946.	7.1	30
7	Stop codon readthrough contexts influence reporter expression differentially depending on the presence of an IRES. Wellcome Open Research, 2020, 5, 221.	1.8	1
8	Processive Recoding and MetazoanÂEvolution of SelenoproteinÂP: Up to 132 UGAs in Molluscs. Journal of Molecular Biology, 2019, 431, 4381-4407.	4.2	18
9	Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Molecular Cell, 2018, 70, 254-264.e6.	9.7	112
10	Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. Journal of Biological Chemistry, 2018, 293, 4434-4444.	3.4	59
11	Translation control of mRNAs encoding mammalian translation initiation factors. Gene, 2018, 651, 174-182.	2.2	16
12	AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature, 2018, 553, 356-360.	27.8	63
13	TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the integrated stress response. ELife, 2018, 7, .	6.0	28
14	Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection. PLoS ONE, 2018, 13, e0192648.	2.5	20
15	A [Cu]rious Ribosomal Profiling Pattern Leads to the Discovery of Ribosomal Frameshifting in the Synthesis of a Copper Chaperone. Molecular Cell, 2017, 65, 203-204.	9.7	4
16	Avoidance of reporter assay distortions from fused dual reporters. Rna, 2017, 23, 1285-1289.	3.5	63
17	Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Research, 2017, 45, 513-526.	14.5	124
18	Multiple RNA structures affect translation initiation and UGA redefinition efficiency during synthesis of selenoprotein P. Nucleic Acids Research, 2017, 45, 13004-13015.	14.5	18

GARY LOUGHRAN

#	Article	IF	CITATIONS
19	Systematic analysis of the <i>PTEN</i> 5′ leader identifies a major AUU initiated proteoform. Open Biology, 2016, 6, 150203.	3.6	39
20	Catch me if you can: trapping scanning ribosomes in their footsteps. Nature Structural and Molecular Biology, 2016, 23, 703-704.	8.2	3
21	Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Research, 2016, 44, gkw530.	14.5	238
22	Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus. Journal of Virology, 2015, 89, 8580-8589.	3.4	23
23	Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Research, 2014, 42, 8928-8938.	14.5	184
24	Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Research, 2012, 40, 2898-2906.	14.5	99
25	Ribosomal frameshifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1111-9.	7.1	67
26	Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18056-18060.	7.1	125
27	uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10079-10084.	7.1	90
28	A case for "StopGo": Reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). Rna, 2007, 13, 803-810.	3.5	104