Stefania Benedetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3680505/publications.pdf

Version: 2024-02-01

516710 552781 46 767 16 26 citations g-index h-index papers 47 47 47 978 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Doping-Dependent Optical Response of a Hybrid Transparent Conductive Oxide/Plasmonic Medium. Journal of Physical Chemistry C, 2022, 126, 1881-1889.	3.1	3
2	Lifetime of Photogenerated Positive Charges in Hybrid Cerium Oxide-Based Materials from Space and Mirror Charge Effects in Time-Resolved Photoemission Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 11174-11181.	3.1	3
3	Ultrafast Dynamics of Plasmon-Mediated Charge Transfer in Ag@CeO ₂ Studied by Free Electron Laser Time-Resolved X-ray Absorption Spectroscopy. Nano Letters, 2021, 21, 1729-1734.	9.1	16
4	Quantitative Ultrafast Electronâ€Temperature Dynamics in Photoâ€Excited Au Nanoparticles. Small, 2021, 17, e2100050.	10.0	7
5	ZnO Thin Films Growth Optimization for Piezoelectric Application. Sensors, 2021, 21, 6114.	3.8	7
6	Thermal assisted tailoring of magnetic coercivity in Iron thin films on unstable Lithium Niobate substrate. Journal of Magnetism and Magnetic Materials, 2020, 515, 167257.	2.3	4
7	Surface Reactivity of Ag-Modified Ceria to Hydrogen: A Combined Experimental and Theoretical Investigation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27682-27690.	8.0	6
8	Optical and electronic properties of silver nanoparticles embedded in cerium oxide. Journal of Chemical Physics, 2020, 152, 114704.	3.0	12
9	Polar Step-Driven Metal Nucleation and Growth: The Ag/ZnO(101ì0) Case. Journal of Physical Chemistry C, 2020, 124, 6130-6140.	3.1	2
10	Original design of a patterned multiferroic heterostructure for electrical control of the magnetic shape anisotropy. Journal of Magnetism and Magnetic Materials, 2020, 507, 166816.	2.3	4
11	Interplay between morphology and magnetoelectric coupling in Fe/PMN-PT multiferroic heterostructures studied by microscopy techniques. Physical Review Materials, 2020, 4, .	2.4	7
12	Transparent conductive oxide-based architectures for the electrical modulation of the optical response: A spectroscopic ellipsometry study. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 061209.	1.2	7
13	Highly efficient plasmon-mediated electron injection into cerium oxide from embedded silver nanoparticles. Nanoscale, 2019, 11, 10282-10291.	5.6	27
14	Reversible Modification of Ferromagnetism through Electrically Controlled Morphology. Advanced Electronic Materials, 2019, 5, 1900150.	5.1	15
15	Core–Shell Charge Transfer in Plasmonic Fe@Ag Nanoparticles on MgO Film. Journal of Physical Chemistry C, 2019, 123, 8206-8211.	3.1	5
16	Spectroscopic identification of the chemical interplay between defects and dopants in Al-doped ZnO. Physical Chemistry Chemical Physics, 2017, 19, 29364-29371.	2.8	16
17	Dopant-Induced Diffusion Processes at Metal–Oxide Interfaces Studied for Iron- and Chromium-Doped MgO/Mo(001) Model Systems. Journal of Physical Chemistry C, 2016, 120, 13604-13609.	3.1	14
18	Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range. Journal of Applied Physics, 2015, 118, .	2.5	25

#	Article	IF	Citations
19	ZnO Nanostructure Formation on the Mo(001) Surface. Journal of Physical Chemistry C, 2015, 119, 13743-13749.	3.1	4
20	Chromium-Doped MgO Thin Films: Morphology, Electronic Structure, and Segregation Effects. Journal of Physical Chemistry C, 2015, 119, 25469-25475.	3.1	14
21	Steering the Growth of Metal Adâ€particles via Interface Interactions Between a MgO Thin Film and a Mo Support. Advanced Functional Materials, 2013, 23, 75-80.	14.9	24
22	Metal Nanoparticles: Steering the Growth of Metal Adâ€particles via Interface Interactions Between a MgO Thin Film and a Mo Support (Adv. Funct. Mater. 1/2013). Advanced Functional Materials, 2013, 23, 136-136.	14.9	1
23	Depth-dependent magnetization reversal and spin structure of Fe/NiO exchange-coupled epitaxial bilayers. Applied Physics Letters, 2012, 101, 082412.	3.3	7
24	Electronic and electrostatic properties of polar oxide nanostructures: $MgO(111)$ islands on Au(111). Physical Review B, 2012, 86, .	3.2	20
25	K-edge x-ray absorption spectra in transition-metal oxides beyond the single-particle approximation: Shake-up many-body effects. Physical Review B, 2012, 86, .	3.2	30
26	Compensating Edge Polarity: A Means To Alter the Growth Orientation of MgO Nanostructures on Au(111). Journal of Physical Chemistry C, 2012, 116, 11126-11132.	3.1	15
27	Competition between Polar and Nonpolar Growth of MgO Thin Films on Au(111). Journal of Physical Chemistry C, 2011, 115, 23043-23049.	3.1	36
28	Change of the surface electronic structure of $Au(111)$ by a monolayer $MgO(001)$ film. Physical Review B, 2011, 84, .	3.2	30
29	Spontaneous Oxidation of Mg Atoms at Defect Sites in an MgO Surface. Journal of Physical Chemistry C, 2011, 115, 3684-3687.	3.1	12
30	Growth and morphology of metal particles on MgO/Mo(001): A comparative STM and diffraction study. Physical Review B, 2011, 83, .	3.2	20
31	Interfacial magnetic structure in Fe/NiO(001). Physical Review B, 2011, 83, .	3.2	9
32	Depth-dependent magnetic characterization of Fe films on NiO(001). Nuclear Instruments & Methods in Physics Research B, 2010, 268, 361-364.	1.4	6
33	Magnetic couplings and exchange bias in Fe/NiO epitaxial layers. Physical Review B, 2010, 81, .	3.2	24
34	Morphology-induced magnetic phase transitions in Fe deposits on MgO films investigated with XMCD and STM. Physical Review B, 2009, 79, .	3.2	28
35	Fe self-organization on stepped MgO surfaces. Superlattices and Microstructures, 2009, 46, 153-158.	3.1	5
36	X-ray Photoemission Study of the Charge State of Au Nanoparticles on Thin MgO/Fe(001) Films. Journal of Physical Chemistry C, 2009, 113, 19957-19965.	3.1	27

#	Article	IF	CITATIONS
37	Structure and morphology of thin MgO films on Mo(001). Physical Review B, 2008, 78, .	3.2	65
38	Structure at Fe/NiO(100) and Fe/MgO(100) interfaces by X-ray absorption fine structure. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C555-C556.	0.3	0
39	Metals on oxides: structure, morphology and interface chemistry. Journal of Physics Condensed Matter, 2007, 19, 225002.	1.8	8
40	Preparation and characterization of MgO stepped surfaces. Surface Science, 2007, 601, 2636-2640.	1.9	15
41	Structure and electronic properties of Fe nanostructures on MgO(001). Surface Science, 2007, 601, 3902-3906.	1.9	9
42	Morphology and optical properties of MgO thin films on Mo(001). Chemical Physics Letters, 2006, 430, 330-335.	2.6	83
43	Morphology and chemical activity at the Au/NiO interface. Surface Science, 2006, 600, 4251-4255.	1.9	10
44	Absence of oxide formation at the Fe/MgO(001) interface. Surface Science, 2005, 583, 191-198.	1.9	48
45	Initial stages of cobalt film growth on MgO(001) surface. Technical Physics Letters, 2005, 31, 494-497.	0.7	7
46	Chemical reactions and interdiffusion at the Fe/NiO(001) interface. Surface Science, 2004, 572, L348-L354.	1.9	27