
viorel Simion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3680407/publications.pdf Version: 2024-02-01

VIODEL SIMION

#	Article	IF	CITATIONS
1	Long Noncoding RNAs as Therapeutic Targets. Advances in Experimental Medicine and Biology, 2022, 1363, 161-175.	0.8	13
2	LncRNAâ€MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and <i>cis</i> â€modulation of MAP3K4. FASEB Journal, 2021, 35, e21133.	0.2	20
3	LentiRILES, a miRNA-ON sensor system for monitoring the functionality of miRNA in cancer biology and therapy. RNA Biology, 2021, 18, 198-214.	1.5	4
4	A Smooth Muscle Cell–Enriched Long Noncoding RNA Regulates Cell Plasticity and Atherosclerosis by Interacting With Serum Response Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2399-2416.	1.1	30
5	Intracellular trafficking and functional monitoring of miRNA delivery in glioblastoma using lipopolyplexes and the miRNA-ON RILES reporter system. Journal of Controlled Release, 2020, 327, 429-443.	4.8	16
6	Computational Analysis of Targeting SARS-CoV-2, Viral Entry Proteins ACE2 and TMPRSS2, and Interferon Genes by Host MicroRNAs. Genes, 2020, 11, 1354.	1.0	56
7	A macrophage-specific IncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nature Communications, 2020, 11, 6135.	5.8	113
8	Long noncoding RNA <i>SNHG12</i> integrates a DNA-PK–mediated DNA damage response and vascular senescence. Science Translational Medicine, 2020, 12, .	5.8	91
9	LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight, 2020, 5, .	2.3	53
10	Abstract 13202: LncRNA-MAP3K4 Regulates Vascular Inflammation Through a P38 MAPK Signaling Pathway and Cis -modulation of MAP3K4. Circulation, 2020, 142, .	1.6	1
11	Targeted Transfection Using PEGylated Cationic Liposomes Directed Towards P-Selectin Increases siRNA Delivery into Activated Endothelial Cells. Pharmaceutics, 2019, 11, 47.	2.0	22
12	Long Non-coding RNAs in Vascular Health and Disease. , 2019, , 151-179.		0
13	LncRNAs in vascular biology and disease. Vascular Pharmacology, 2019, 114, 145-156.	1.0	133
14	Long Non-Coding RNAs in Vascular Inflammation. Frontiers in Cardiovascular Medicine, 2018, 5, 22.	1.1	22
15	Long noncoding RNAs in cardiovascular disease, diagnosis, and therapy. Current Opinion in Cardiology, 2017, 32, 776-783.	0.8	63
16	Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy. PLoS ONE, 2017, 12, e0177492.	1.1	8
17	Pharmacomodulation of microRNA Expression in Neurocognitive Diseases: Obstacles and Future Opportunities. Current Neuropharmacology, 2017, 15, 276-290.	1.4	20
18	MicroRNAs in Neurocognitive Dysfunctions: New Molecular Targets for Pharmacological Treatments?. Current Neuropharmacology, 2017, 15, 260-275.	1.4	43

VIOREL SIMION

#	Article	IF	CITATIONS
19	P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation. Mediators of Inflammation, 2016, 2016, 1-15.	1.4	22
20	Conjugation of curcumin-loaded lipid nanoemulsions with cell-penetrating peptides increases their cellular uptake and enhances the anti-inflammatory effects in endothelial cells. Journal of Pharmacy and Pharmacology, 2016, 68, 195-207.	1.2	33
21	Hybrid fullerene conjugates as vectors for DNA cell-delivery. Journal of Materials Chemistry B, 2015, 3, 2433-2446.	2.9	39
22	VCAM-1 directed target-sensitive liposomes carrying CCR2 antagonists bind to activated endothelium and reduce adhesion and transmigration of monocytes. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 18-29.	2.0	47
23	Functional analysis of the fractalkine gene promoter in human aortic smooth muscle cells exposed to proinflammatory conditions. FEBS Journal, 2014, 281, 3869-3881.	2.2	6
24	Subendothelial resistin enhances monocyte transmigration in a co-culture of human endothelial and smooth muscle cells by mechanisms involving fractalkine, MCP-1 and activation of TLR4 and Gi/o proteins signaling. International Journal of Biochemistry and Cell Biology, 2014, 50, 29-37.	1.2	35
25	Development of curcumin-loaded poly(hydroxybutyrate-co-hydroxyvalerate) nanoparticles as anti-inflammatory carriers to human-activated endothelial cells. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	7
26	Inflammatory effects of resistin on human smooth muscle cells: up-regulation of fractalkine and its receptor, CX3CR1 expression by TLR4 and Gi-protein pathways. Cell and Tissue Research, 2013, 351, 161-174.	1.5	40
27	Monocytes and smooth muscle cells cross-talk activates STAT3 and induces resistin and reactive oxygen species and production. Journal of Cellular Biochemistry, 2013, 114, 2273-2283.	1.2	22
28	Stem Cell Regenerative Potential Combined with Nanotechnology and Tissue Engineering for Myocardial Regeneration. Current Stem Cell Research and Therapy, 2013, 8, 292-303.	0.6	8
29	Resistin and High Glucose Concentrations-Activation of Human Smooth Muscle Cells Induces Enhanced Monocyte Chemotaxis. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 2012, 19, 17-24.	0.0	0
30	A novel pro-inflammatory mechanism of action of resistin in human endothelial cells: Up-regulation of SOCS3 expression through STAT3 activation. Biochemical and Biophysical Research Communications, 2012, 422, 321-326.	1.0	34
31	High glucose induces enhanced expression of resistin in human U937 monocyte-like cell line by MAPK- and NF-kB-dependent mechanisms; the modulating effect of insulin. Cell and Tissue Research, 2011, 343, 379-387.	1.5	26
32	Curcumin and a <i>Morus alba</i> Extract Reduce Proâ€Inflammatory Effects of Resistin in Human Endothelial Cells. Phytotherapy Research, 2011, 25, 1737-1742.	2.8	31
33	Similar effects of resistin and high glucose on P-selectin and fractalkine expression and monocyte adhesion in human endothelial cells. Biochemical and Biophysical Research Communications, 2010, 391, 1443-1448.	1.0	56