David Kokalj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3679445/publications.pdf

Version: 2024-02-01

10	170	1039406	1199166
19	173	9	12
papers	citations	h-index	g-index
10	10	10	117
19	19	19	117
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Investigation on the oxidation behavior of AlCrVxN thin films by means of synchrotron radiation and influence on the high temperature friction. Applied Surface Science, 2018, 427, 511-521.	3.1	22
2	Investigation of the influence of the vanadium content on the high temperature tribo-mechanical properties of DC magnetron sputtered AlCrVN thin films. Surface and Coatings Technology, 2017, 328, 172-181.	2,2	19
3	Optimization of the deposition parameters of Ni-20Cr thin films on thermally sprayed Al2O3 for sensor application. Surface and Coatings Technology, 2018, 344, 223-232.	2.2	15
4	Influence of the deposition parameters on the texture and mechanical properties of magnetron sputtered cubic MoNx thin films. Materialia, 2019, 5, 100186.	1.3	15
5	Embedment of eutectic tungsten carbides in arc sprayed steel coatings. Surface and Coatings Technology, 2017, 331, 153-162.	2.2	13
6	Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications. Metals, 2022, 12, 122.	1.0	11
7	Resonant Raman scattering characterization of thermally annealed HiPIMS deposited MoS coatings. Surface and Coatings Technology, 2019, 377, 124891.	2.2	10
8	Aerosol synthesis of titanium nitride nanoparticles by direct current arc discharge method. Advanced Powder Technology, 2020, 31, 4119-4128.	2.0	10
9	Influence of Cr-Content on the thermoelectric and mechanical properties of NiCr thin film thermocouples synthesized on thermally sprayed Al2O3. Thin Solid Films, 2018, 663, 148-158.	0.8	9
10	On the synthesis and structural evolution of artificial CrN/TiN nanocomposites. Applied Surface Science, 2021, 535, 147736.	3.1	8
11	Temperature-Induced Formation of Lubricous Oxides in Vanadium Containing Iron-Based Arc Sprayed Coatings. Coatings, 2019, 9, 18.	1.2	7
12	A Study on the Tribological Behavior of Vanadium-Doped Arc Sprayed Coatings. Journal of Thermal Spray Technology, 2017, 26, 503-516.	1.6	6
13	Controlling the Structural, Mechanical and Frictional Properties of MoSx Coatings by High-Power Impulse Magnetron Sputtering. Coatings, 2020, 10, 755.	1.2	6
14	Effects of AlN and BCN Thin Film Multilayer Design on the Reaction Time of Ni/Ni-20Cr Thin Film Thermocouples on Thermally Sprayed Al2O3. Sensors, 2019, 19, 3414.	2.1	5
15	Combination of an atmospheric pressured arc reactor and a magnetron sputter device for the synthesis of novel nanostructured thin films. Thin Solid Films, 2019, 689, 137528.	0.8	5
16	Influence of the PVD process conditions on the incorporation of TiN nanoparticles into magnetron sputtered CrN thin films. Surface and Coatings Technology, 2021, 409, 126935.	2.2	4
17	Impact of structure on mechanical properties and oxidation behavior of magnetron sputtered cubic and hexagonal MoNx thin films. Applied Surface Science Advances, 2021, 5, 100119.	2.9	4
18	Bias-voltage effect on the TiN nanoparticle injection into magnetron sputtered CrN thin films towards nc-TiN/nc-CrN composites. Applied Surface Science Advances, 2021, 6, 100149.	2.9	3

#	Article	IF	CITATIONS
19	Combining Thermal Spraying and Magnetron Sputtering for the Development of Ni/Ni-20Cr Thin Film Thermocouples for Plastic Flat Film Extrusion Processes. Coatings, 2019, 9, 603.	1.2	1