Nelson Pulido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3679062/publications.pdf

Version: 2024-02-01

687363 677142 28 502 13 22 citations h-index g-index papers 28 28 28 526 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Broadband wavelength slip model of the 1906 Ecuador-Colombia megathrust-earthquake based on seismic intensity and tsunami data. Tectonophysics, 2020, 774, 228226.	2.2	6
2	Empirical Models for Surface―and Bodyâ€Wave Amplifications of Response Spectra in the Bogotá Basin, Colombia. Bulletin of the Seismological Society of America, 2019, 109, 987-1004.	2.3	5
3	A new approach for estimating seismic damage of buried water supply pipelines. Earthquake Engineering and Structural Dynamics, 2017, 46, 1531-1548.	4.4	6
4	Development of a first 3D crustal velocity model for the region of Bogot \tilde{A}_i , Colombia. Ingenieria E Investigacion, 2017, 37, 42-51.	0.4	3
5	Near-field tsunami forecast system based on near real-time seismic moment tensor estimation in the regions of Indonesia, the Philippines, and Chile. Earth, Planets and Space, 2016, 68, .	2.5	13
6	Rupture Process and Strong-Motion Generation of the 2014 Iquique, Northern Chile, Earthquake. Journal of Earthquake and Tsunami, 2016, 10, 1640008.	1.3	4
7	Unusual stress rotations within the Philippines possibly caused by slip heterogeneity along the Philippine fault. Journal of Geophysical Research: Solid Earth, 2016, 121, 2020-2036.	3.4	8
8	Discriminating non-seismic long-period pulses and noise to improve earthquake source inversion. Earth, Planets and Space, 2016, 68, .	2.5	2
9	Scenario Source Models and Strong Ground Motion for Future Megaâ€earthquakes: Application to Lima, Central Peru. Bulletin of the Seismological Society of America, 2015, 105, 368-386.	2.3	27
10	Development and Operation of a Regional Moment Tensor Analysis System in the Philippines: Contributions to the Understanding of Recent Damaging Earthquakes. Journal of Disaster Research, 2015, 10, 25-34.	0.7	11
11	Estimation of a Source Model and Strong Motion Simulation for Tacna City, South Peru. Journal of Disaster Research, 2014, 9, 925-930.	0.7	4
12	Simulation of Tsunami Inundation in Central Peru from Future Megathrust Earthquake Scenarios. Journal of Disaster Research, 2014, 9, 961-967.	0.7	13
13	Evaluation of Seismic Vulnerability of Buildings Based on Damage Survey Data from the 2007 Pisco, Peru Earthquake. Journal of Disaster Research, 2014, 9, 1050-1058.	0.7	4
14	Highâ€frequency source radiation during the 2011 Tohokuâ€Oki earthquake, Japan, inferred from KiKâ€net strongâ€motion seismograms. Journal of Geophysical Research: Solid Earth, 2013, 118, 222-239.	3.4	8
15	Strong Motion Simulation of the M8.0 August 15, 2007, Pisco Earthquake; Effect of a Multi-Frequency Rupture Process. Journal of Disaster Research, 2013, 8, 235-242.	0.7	4
16	Strong localized asperity of the 2011 Tohoku-Oki earthquake, Japan. Earth, Planets and Space, 2012, 64, 649-654.	2.5	17
17	Rupture process and coseismic deformations of the 27 February 2010 Maule earthquake, Chile. Earth, Planets and Space, 2011, 63, 955-959.	2.5	15
18	Nonlinear site response evidence of K-NET and KiK-net records from the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 2011, 63, 785-789.	2.5	55

#	Article	lF	CITATION
19	A NEW SEISMIC DAMAGE PREDICTION METHODOLOGY OF WATER SUPPLY PIPELINES FOR WIDE REGIONS; APPLICATION TO THE 2004 NIIGATA-KEN CHUETSU EARTHQUAKE, JAPAN. Doboku Gakkai Ronbunshuu A, 2010, 66, 561-567.	0.3	0
20	Estimation of the High-Frequency Radiation of the 2000 Tottori (Japan) Earthquake Based on a Dynamic Model of Fault Rupture: Application to the Strong Ground Motion Simulation. Bulletin of the Seismological Society of America, 2009, 99, 2305-2322.	2.3	36
21	Rupture process of the 2007 Notohanto earthquake by using an isochrones back-projection method and K-NET/KiK-net data. Earth, Planets and Space, 2008, 60, 1035-1040.	2.5	15
22	Simulated Strong Ground Motions for the Great M 9.3 Sumatra-Andaman Earthquake of 26 December 2004. Bulletin of the Seismological Society of America, 2007, 97, S139-S151.	2.3	28
23	Sensitivity of Ground-Motion Simulations to Earthquake Source Parameters: A Case Study for Istanbul, Turkey. Bulletin of the Seismological Society of America, 2007, 97, 881-900.	2.3	39
24	Local site effects in Ataköy, Istanbul, Turkey, due to a future large earthquake in the Marmara Sea. Geophysical Journal International, 2006, 167, 1413-1424.	2.4	27
25	Las Colinas landslide: Rapid and long-traveling soil flow caused by the January 13, 2001, El Salvador earthquake., 2004,,.		7
26	Near-fault strong motion complexity of the 2000 Tottori earthquake (Japan) from a broadband source asperity model. Tectonophysics, 2004, 390, 177-192.	2.2	53
27	Strong ground motion estimation in the Sea of Marmara region (Turkey) based on a scenario earthquake. Tectonophysics, 2004, 391, 357-374.	2.2	57
28	Estimation of dynamic rupture parameters from the radiated seismic energy and apparent stress. Geophysical Research Letters, 2000, 27, 3945-3948.	4.0	35