
Marie-Paule Besland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3678933/publications.pdf Version: 2024-02-01

0

#	Article	IF	CITATIONS
1	Control of stoichiometry and morphology in polycrystalline V2O3 thin films using oxygen buffers. Journal of Materials Science, 2020, 55, 14717-14727.	3.7	2
2	Effect of RF sputtering power and vacuum annealing on the properties of AZO thin films prepared from ceramic target in confocal configuration. Materials Science in Semiconductor Processing, 2020, 118, 105217.	4.0	36
3	Competition between V2O3 phases deposited by one-step reactive sputtering process on polycrystalline conducting electrode. Thin Solid Films, 2020, 705, 138063.	1.8	7
4	Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films. Journal of Applied Physics, 2018, 123, .	2.5	33
5	Non-volatile resistive switching in the Mott insulator (V1â^'xCrx)2O3. Physica B: Condensed Matter, 2018, 536, 327-330.	2.7	9
6	Mott insulators: A large class of materials for Leaky Integrate and Fire (LIF) artificial neuron. Journal of Applied Physics, 2018, 124, .	2.5	24
7	First demonstration of "Leaky Integrate and Fire―artificial neuron behavior on (V0.95Cr0.05)2O3 thin film. MRS Communications, 2018, 8, 835-841.	1.8	11
8	Mott Memory Devices Based on the Mott Insulator (V1-xCrx)2O3. , 2018, , .		1
9	Thin films of binary amorphous Zn-Zr alloys developed by magnetron co-sputtering for the production of degradable coronary stents: A preliminary study. Bioactive Materials, 2018, 3, 385-388.	15.6	3
10	A Leakyâ€Integrateâ€andâ€Fire Neuron Analog Realized with a Mott Insulator. Advanced Functional Materials, 2017, 27, 1604740.	14.9	186
11	(Invited) Control of Resistive Switching in Mott Memories Based on TiN/AM4Q8/TiN MIM Devices. ECS Transactions, 2017, 75, 3-12.	0.5	2
12	An Artificial Neuron Founded on Resistive Switching of Mott Insulators. , 2017, , .		1
13	Structural and dielectric characterization of sputtered Tantalum Titanium Oxide thin films for high temperature capacitor applications. Thin Solid Films, 2016, 606, 127-132.	1.8	8
14	Metal–insulator transitions in (V1-xCrx)2O3 thin films deposited by reactive direct current magnetron co-sputtering. Thin Solid Films, 2016, 617, 56-62.	1.8	17
15	Control of resistive switching in AM ₄ Q ₈ narrow gap Mott insulators: A first step towards neuromorphic applications. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 239-244.	1.8	18
16	Resistive Switching in Mott Insulators and Correlated Systems. Advanced Functional Materials, 2015, 25, 6287-6305.	14.9	130
17	Investigation of oxide layer on CdTe film surface and its effect on the device performance. Materials Science in Semiconductor Processing, 2015, 40, 402-406.	4.0	14

18 From Resistive Switching Mechanisms in AM4Q8 Mott Insulators to Mott Memories. , 2015, , .

Marie-Paule Besland

#	Article	IF	CITATIONS
19	Studies of CdS/CdTe interface: Comparison of CdS films deposited by close space sublimation and chemical bath deposition techniques. Thin Solid Films, 2015, 582, 290-294.	1.8	13
20	Surface evolution of sputtered Cu(In,Ga)Se2 thin films under various annealing temperatures. Journal of Materials Science: Materials in Electronics, 2015, 26, 4840-4847.	2.2	10
21	Electric Pulse Induced Resistive Switching in the Narrow Gap Mott Insulator GaMo ₄ S ₈ . Key Engineering Materials, 2014, 617, 135-140.	0.4	10
22	A study of different selenium sources in the synthesis processes of chalcopyrite semiconductors. Vacuum, 2014, 105, 46-51.	3.5	7
23	Raman and XPS studies of CIGS/Mo interfaces under various annealing temperatures. Materials Letters, 2014, 136, 278-281.	2.6	23
24	TEM and XPS studies on CdS/CIGS interfaces. Journal of Physics and Chemistry of Solids, 2014, 75, 1279-1283.	4.0	41
25	Investigation of chalcopyrite film growth at various temperatures: analyses from top to the bottom of the thin films. Journal of Materials Science: Materials in Electronics, 2014, 25, 2237-2243.	2.2	3
26	Preparation and characterization of ZnS/CdS bi-layer for CdTe solar cell application. Journal of Physics and Chemistry of Solids, 2013, 74, 1879-1883.	4.0	39
27	Deposition by radio frequency magnetron sputtering of GaV4S8 thin films for resistive random access memory application. Thin Solid Films, 2013, 533, 54-60.	1.8	9
28	Investigation of copper indium gallium selenide material growth by selenization of metallic precursors. Journal of Crystal Growth, 2013, 382, 56-60.	1.5	21
29	An optimized In–CuGa metallic precursors for chalcopyrite thin films. Thin Solid Films, 2013, 545, 251-256.	1.8	8
30	Electrical characterizations of resistive random access memory devices based on GaV4S8 thin layers. Thin Solid Films, 2013, 533, 61-65.	1.8	19
31	Electrical Characteristics of TiTaO Thin Films Deposited on SiO2/Si Substrates by Magnetron Sputtering. ECS Solid State Letters, 2013, 2, Q13-Q15.	1.4	2
32	First evidence of resistive switching in polycrystalline GaV ₄ S ₈ thin layers. Physica Status Solidi - Rapid Research Letters, 2011, 5, 53-55.	2.4	23
33	Investigation of BST thin films deposited by RF magnetron sputtering in pure Argon. Thin Solid Films, 2010, 518, 4619-4622.	1.8	8
34	Influence of Ion Bombardment and Annealing on the Structural and Optical Properties of TiO _{<i>x</i>} Thin Films Deposited in Inductively Coupled TTIP/O ₂ Plasma. Plasma Processes and Polymers, 2009, 6, S741.	3.0	8
35	Dip-coated La2Ti2O7 as a buffer layer for growth of Bi3.25La0.75Ti3O12 films with enhanced (011) orientation. Journal of the European Ceramic Society, 2009, 29, 1977-1985.	5.7	5
36	Small scale mechanical properties of polycrystalline materials: in situ diffraction studies. International Journal of Nanotechnology, 2008, 5, 609.	0.2	4

#	Article	IF	CITATIONS
37	TWO STEP REACTIVE MAGNETRON SPUTTERING OF BLT THIN FILMS. Integrated Ferroelectrics, 2007, 94, 94-104.	0.7	2
38	Deposition of AlN films by reactive sputtering: Effect of radiofrequency substrate bias. Thin Solid Films, 2007, 515, 7105-7108.	1.8	25
39	Examination of the electrochemical reactivity of screen printed carbon electrode treated by radio-frequency argon plasma. Electrochemistry Communications, 2007, 9, 1798-1804.	4.7	19
40	Impact of the Cu-based substrates and catalyst deposition techniques on carbon nanotube growth at low temperature by PECVD. Microelectronic Engineering, 2007, 84, 2501-2505.	2.4	20
41	Magnetron Sputtering of Aluminium Nitride Thin Films for Thermal Management. Plasma Processes and Polymers, 2007, 4, S1-S5.	3.0	12
42	Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study. Electrochimica Acta, 2007, 52, 5053-5061.	5.2	10
43	Low temperature plasma carbon nanotubes growth on patterned catalyst. Microelectronic Engineering, 2006, 83, 2427-2431.	2.4	6
44	Residual stress control in MoCr thin films deposited by ionized magnetron sputtering. Surface and Coatings Technology, 2006, 200, 6549-6553.	4.8	12
45	Comparison of lanthanum substituted bismuth titanate (BLT) thin films deposited by sputtering and pulsed laser deposition. Thin Solid Films, 2006, 495, 86-91.	1.8	31
46	Characterizations of CNx thin films made by ionized physical vapor deposition. Thin Solid Films, 2005, 482, 192-196.	1.8	8
47	Sol-gel-deposited Sb-doped SnO 2 as transparent anode for OLED: process, patterning, and hole injection characteristics. , 2002, 4464, 103.		0
48	Reactive ion etching of sol–gel-processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes. Synthetic Metals, 2002, 127, 207-211.	3.9	42
49	Electrical and optical characteristics of indium tin oxide thin films deposited by cathodic sputtering for top emitting organic electroluminescent devices. Materials Science and Engineering C, 2002, 21, 265-271.	7.3	26
50	2 [micro sign]m resonant cavity enhanced InP/InGaAs single quantum well photo-detector. Electronics Letters, 1999, 35, 1272.	1.0	7
51	In Situ Photoluminescence Control during Fabrication of SiO2/InP Structures. Journal of the Electrochemical Society, 1997, 144, 2086-2095.	2.9	5
52	<title>Strength of indium-phosphide-based microstructures</title> . , 1997, 3008, 251.		9
53	Optimized SiO2/InP structures prepared by electron cyclotron resonance plasma. Journal of Applied Physics, 1996, 80, 3100-3109.	2.5	10
54	Electrical characterization of metal-oxide-InP tunnel diodes based on current-voltage, admittance and low frequency noise measurements. Solid-State Electronics, 1995, 38, 1035-1043.	1.4	36

#	Article	IF	CITATIONS
55	Desorption of ultravioletâ€ozone oxides from InP under phosphorus and arsenic overpressures. Journal of Applied Physics, 1995, 77, 5167-5172.	2.5	12
56	Correlations Between the Electrical Characteristics of Metal â€â€‰Oxide â€â€‰InP Tunnel Diodes and of Thin Interfacial Oxides. Journal of the Electrochemical Society, 1995, 142, 1343-1348.	l the Natur 2.9	^{ге} 5
57	In Situ Studies of the Anodic Oxidation of Indium Phosphide. Journal of the Electrochemical Society, 1993, 140, 104-108.	2.9	15
58	Passivation of InP using In(PO3)3â€condensed phosphates: From oxide growth properties to metalâ€insulatorâ€semiconductor fieldâ€effectâ€transistor devices. Journal of Applied Physics, 1992, 71, 2981-2992.	2.5	30
59	Long-term stability of InP MIS devices. Applied Surface Science, 1991, 50, 383-389.	6.1	12
60	Evidence for a new passivating indium rich phosphate prepared by ultraviolet/ozone oxidation of InP. Applied Physics Letters, 1991, 59, 1617-1619.	3.3	36
61	Comparison of Electrical Behavior of GaN-Based MOS Structures Obtained by Different PECVD Process. Materials Science Forum, 0, 711, 228-232.	0.3	0