
Peter J Simpson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3678781/publications.pdf Version: 2024-02-01

DETED | SIMDSON

#	Article	IF	CITATIONS
1	Solution structure of the Hop TPR2A domain and investigation of target druggability by NMR, biochemical and in silico approaches. Scientific Reports, 2020, 10, 16000.	3.3	8
2	Solution Structure of the SGTA Dimerisation Domain and Investigation of Its Interactions with the Ubiquitin-Like Domains of BAG6 and UBL4A. PLoS ONE, 2014, 9, e113281.	2.5	18
3	Specific DNA recognition mediated by a type IV pilin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3065-3070.	7.1	141
4	Structure of the Sgt2/Get5 complex provides insights into GET-mediated targeting of tail-anchored membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1327-1332.	7.1	28
5	1H, 13C and 15N assignments of Sgt2ÂN-terminal dimerisation domain and its binding partner, Get5 Ubiquitin-like domain. Biomolecular NMR Assignments, 2013, 7, 271-274.	0.8	5
6	Structures of the Compact Helical Core Domains of Feline Calicivirus and Murine Norovirus VPg Proteins. Journal of Virology, 2013, 87, 5318-5330.	3.4	44
7	The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase. Nucleic Acids Research, 2013, 41, 5679-5691.	14.5	42
8	Regulation of the Plasmodium Motor Complex. Journal of Biological Chemistry, 2012, 287, 36968-36977.	3.4	24
9	Structural insights into the biogenesis and biofilm formation by the <i>Escherichia coli</i> common pilus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3950-3955.	7.1	55
10	Structural insight into the role of Streptococcus parasanguinis Fap1 within oral biofilm formation. Biochemical and Biophysical Research Communications, 2012, 417, 421-426.	2.1	32
11	1H, 13C and 15N resonance assignments of the kinetochore localisation domain of BUBR1, a central component of the spindle assembly checkpoint. Biomolecular NMR Assignments, 2012, 6, 115-118.	0.8	2
12	Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. Molecular Microbiology, 2011, 79, 566-583.	2.5	64
13	Atomic Resolution Insights into Curli Fiber Biogenesis. Structure, 2011, 19, 1307-1316.	3.3	82
14	Crystallographic Analysis of Polypyrimidine Tract-Binding Protein-Raver1 Interactions Involved in Regulation of Alternative Splicing. Structure, 2011, 19, 1816-1825.	3.3	37
15	Complete 1H, 13C and 15N NMR assignments for donor-strand complemented AafA, the major pilin of aggregative adherence fimbriae (AAF/II) from enteroaggregative E. coli. Biomolecular NMR Assignments, 2011, 5, 1-5.	0.8	2
16	Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus <i>Candida albicans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15775-15779.	7.1	78
17	Backbone 1H, 15N, 13C and Ile, Leu, Val methyl chemical shift assignments for the 33.5ÂkDaÂN-terminal domain of Candida albicans ALS1. Biomolecular NMR Assignments, 2010, 4, 187-190.	0.8	8
18	Structures of Get3, Get4, and Get5 Provide New Models for TA Membrane Protein Targeting. Structure, 2010, 18, 897-902.	3.3	34

Peter J Simpson

#	Article	IF	CITATIONS
19	The SOCS-Box of HIV-1 Vif Interacts with ElonginBC by Induced-Folding to Recruit Its Cul5-Containing Ubiquitin Ligase Complex. PLoS Pathogens, 2010, 6, e1000925.	4.7	72
20	Automated Assignment in Selectively Methyl-Labeled Proteins. Journal of the American Chemical Society, 2009, 131, 9480-9481.	13.7	30
21	A New Labeling Method for Methyl Transverse Relaxation-Optimized Spectroscopy NMR Spectra of Alanine Residues. Journal of the American Chemical Society, 2007, 129, 15428-15429.	13.7	108
22	A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain. Nature Structural and Molecular Biology, 2006, 13, 839-848.	8.2	92
23	Structure and RNA Interactions of the N-Terminal RRM Domains of PTB. Structure, 2004, 12, 1631-1643.	3.3	87
24	Calcium Binding and Thermostability of Carbohydrate Binding Module CBM4-2 of Xyn10A fromRhodothermus marinusâ€. Biochemistry, 2002, 41, 5720-5729.	2.5	41
25	The Solution Structure of the CBM4-2 Carbohydrate Binding Module from a ThermostableRhodothermus marinusXylanaseâ€. Biochemistry, 2002, 41, 5712-5719.	2.5	68
26	Virtually complete 1H, 13C and 15N resonance assignments of the second family 4 xylan binding module of Rhodothermus marinus xylanase 10A. Journal of Biomolecular NMR, 2002, 22, 187-188.	2.8	4
27	Resonance assignment and topology of the 2H, 13C, 15N labelled 29 kDa N-terminal fragment of the polypyrimidine tract binding protein (PTB). Journal of Biomolecular NMR, 2002, 24, 79-80.	2.8	3
28	Evidence for Synergy between Family 2b Carbohydrate Binding Modules in Cellulomonas fimi Xylanase 11A. Biochemistry, 2001, 40, 2468-2477.	2.5	82
29	Clostridium thermocellum Xyn10B Carbohydrate-Binding Module 22-2:  The Role of Conserved Amino Acids in Ligand Binding,. Biochemistry, 2001, 40, 9167-9176.	2.5	80
30	Role of Hydrogen Bonding in the Interaction between a Xylan Binding Module and Xylan. Biochemistry, 2001, 40, 5700-5707.	2.5	57
31	Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochemical Journal, 2000, 345, 53.	3.7	77
32	Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochemical Journal, 2000, 345, 53-60.	3.7	89
33	The Structural Basis for the Ligand Specificity of Family 2 Carbohydrate-binding Modules. Journal of Biological Chemistry, 2000, 275, 41137-41142.	3.4	120
34	Solution Structure of the CBM10 Cellulose Binding Module fromPseudomonasXylanase Aâ€,‡. Biochemistry, 2000, 39, 978-984.	2.5	73
35	Trp22, Trp24, and Tyr8 Play a Pivotal Role in the Binding of the Family 10 Cellulose-Binding Module fromPseudomonasXylanase A to Insoluble Ligands+. Biochemistry, 2000, 39, 985-991.	2.5	52
36	A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Structure, 1999, 7, 853-864.	3.3	90

#	Article	IF	CITATIONS
37	The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Letters, 1999, 447, 58-60.	2.8	140
38	The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochemical Journal, 1999, 342, 473-480.	3.7	73