List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3678760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factors Influencing Catalytic Activity of Size-Specific Triphenylphosphine-Ligated Gold Nanoclusters in the Electrocatalytic Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2022, 126, 246-260.	3.1	12
2	Oxygen-deficient bismuth molybdate nanocatalysts: Synergistic effects in boosting photocatalytic oxidative coupling of benzylamine and mechanistic insight. Journal of Colloid and Interface Science, 2021, 581, 719-728.	9.4	36
3	Influence of the synthesis method on preferential clustering of Yb3+ in CaF2:Yb3+/Er3+ upconverting nanoparticles. Optical Materials, 2021, 112, 110736.	3.6	2
4	Optical Properties of the Atomically Precise <i>C</i> ₄ Core [Au ₉ (PPh ₃) ₈] ³⁺ Cluster Probed by Transient Absorption Spectroscopy and Time-Dependent Density Functional Theory. Journal of Physical Chemistry C, 2021, 125, 2033-2044.	3.1	8
5	Au ₁₀₁ –rGO nanocomposite: immobilization of phosphine-protected gold nanoclusters on reduced graphene oxide without aggregation. Nanoscale Advances, 2021, 3, 1422-1430.	4.6	10
6	Size Effect in Hydrogenation of Nitroaromatics Using Support-Immobilized Atomically Precise Gold Clusters. Journal of Physical Chemistry C, 2021, 125, 3327-3336.	3.1	5
7	Upconversion Thermometry Using Yb ³⁺ /Er ³⁺ Co-Doped KY ₃ F ₁₀ Nanoparticles. ACS Applied Nano Materials, 2021, 4, 5696-5706.	5.0	22
8	Photocatalytic Degradation of Ethiofencarb by a Visible Light-Driven SnIn4S8 Photocatalyst. Nanomaterials, 2021, 11, 1325.	4.1	16
9	Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation. Environmental Pollution, 2021, 279, 116899.	7.5	12
10	Emergent electronic properties in Co-deposited superatomic clusters. Journal of Chemical Physics, 2021, 155, 124309.	3.0	1
11	Potential of metal monoliths with grown carbon nanomaterials as catalyst support in intensified steam reformer: a perspective. Reviews in Chemical Engineering, 2020, 36, 459-491.	4.4	10
12	CO oxidation and the inhibition effects of carboxyl-modification and copper clusters on multi-walled carbon nanotubes. Applied Catalysis B: Environmental, 2020, 262, 118265.	20.2	12
13	Visible-Light Driven Photocatalytic Degradation of Pirimicarb by Pt-Doped AgInS2 Nanoparticles. Catalysts, 2020, 10, 857.	3.5	25
14	A comparison of the Yb3+ absorption and upconversion excitation spectra for both the cubic and hexagonal phases of NaYF4:Yb3+/Er3+ nanoparticles. Optical Materials, 2020, 107, 110050.	3.6	9
15	Theoretical mechanistic study of CO catalytic oxidation by O2 on an ultra-small 13-atom bimetallic Ag7Au6 cluster. Applied Catalysis A: General, 2020, 595, 117505.	4.3	12
16	Kinetics and constraints of CO oxidation over hexameric copper nanocluster catalyst supported on carboxyl-functionalised MWCNT at high temperatures. Chemical Engineering Journal, 2020, 389, 124399.	12.7	8
17	Absorption spectra, defect site distribution and upconversion excitation spectra of CaF2/SrF2/BaF2:Yb3+:Er3+ nanoparticles. Journal of Alloys and Compounds, 2020, 834, 155165.	5.5	27
18	Accelerated ZnMoO ₄ photocatalytic degradation of pirimicarb under UV light mediated by peroxymonosulfate. Applied Organometallic Chemistry, 2019, 33, e5113.	3.5	27

#	Article	IF	CITATIONS
19	Investigation of Phosphine Ligand Protected Au ₁₃ Clusters on Defect Rich Titania. Journal of Physical Chemistry C, 2019, 123, 6642-6649.	3.1	13
20	CO temperature-programmed desorption of a hexameric copper hydride nanocluster catalyst supported on functionalized MWCNTs for active site characterization in a low-temperature water–gas shift reaction. Chemical Engineering Journal, 2019, 377, 120278.	12.7	11
21	Size-controlled, high optical quality ZnO nanowires grown using colloidal Au nanoparticles and ultra-small cluster catalysts. APL Materials, 2019, 7, 022518.	5.1	5
22	Benzyl Alcohol Oxidation Using Gold Catalysts Derived from Au8 Clusters on TiO2. Catalysis Letters, 2019, 149, 449-455.	2.6	22
23	Photocatalytic reduction of CO2 to hydrocarbons using bio-templated porous TiO2 architectures under UV and visible light. Chemical Engineering Journal, 2018, 347, 64-73.	12.7	39
24	Photocatalytic degradation of methylene blue dye using catalyst based on the gold-containing clusters supported on TiO _{2. International Journal of Nanotechnology, 2018, 15, 669.}	0.2	5
25	Recent applications of click chemistry for the functionalization of gold nanoparticles and their conversion to glyco-gold nanoparticles. Beilstein Journal of Organic Chemistry, 2018, 14, 11-24.	2.2	50
26	Aggregation Behavior of Ligand-Protected Au ₉ Clusters on Sputtered Atomic Layer Deposition TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 10781-10789.	3.1	19
27	Apparatus for the investigation of high-temperature, high-pressure gas-phase heterogeneous catalytic and photo-catalytic materials. Review of Scientific Instruments, 2017, 88, 054101.	1.3	4
28	Template-less and surfactant-free solvent-driven direct synthesis of urchin-like gold nanoparticles in anisole. International Journal of Nanotechnology, 2017, 14, 337.	0.2	2
29	Bio-mimicking TiO ₂ architectures for enhanced photocatalytic activity under UV and visible light. RSC Advances, 2017, 7, 39098-39108.	3.6	9
30	Investigation of Ligand-Stabilized Gold Clusters on Defect-Rich Titania. Journal of Physical Chemistry C, 2017, 121, 28007-28016.	3.1	20
31	Hydrothermal synthesis of mixed phase blue titanium dioxide from oxalate stabilised sols. International Journal of Nanotechnology, 2017, 14, 265.	0.2	0
32	Atomically resolved structure of ligand-protected Au9 clusters on TiO2 nanosheets using aberration-corrected STEM. Journal of Chemical Physics, 2016, 144, 114703.	3.0	25
33	Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of <i>Arabidopsis thaliana</i> plants. Plant Journal, 2016, 85, 245-257.	5.7	119
34	Activity of Catalysts Derived from Au101 Immobilized on Activated Carbon. Catalysis Letters, 2016, 146, 1027-1032.	2.6	9
35	A Systematic Density Functional Theory Study of the Complete De-ligation of Ru ₃ (CO) ₁₂ . ChemistrySelect, 2016, 1, 1163-1167.	1.5	8
36	Grouping and aggregation of ligand protected Au ₉ clusters on TiO ₂ nanosheets. RSC Advances, 2016, 6, 110765-110774.	3.6	17

#	Article	IF	CITATIONS
37	Electrochemical stability of carbon-supported gold nanoparticles in acidic electrolyte during cyclic voltammetry. Electrochimica Acta, 2016, 187, 593-604.	5.2	32
38	Gold Nanoparticles Decorated with Sialic Acid Terminated Bi-antennary N-Glycans for the Detection of Influenza Virus at Nanomolar Concentrations. ChemistryOpen, 2015, 4, 708-716.	1.9	23
39	Gold Nanoparticles Decorated with Sialic Acid Terminated Bi-antennary N-Glycans for the Detection of Influenza Virus at Nanomolar Concentrations. ChemistryOpen, 2015, 4, 662-662.	1.9	3
40	Carbon nanotube diameter control via catalytic Co nanoparticles electrodeposited in porous alumina membranes. RSC Advances, 2015, 5, 25747-25754.	3.6	9
41	The effect of counter ions on the far-infrared spectra of tris(triphenylphosphinegold)oxonium dimer salts. RSC Advances, 2015, 5, 74499-74505.	3.6	3
42	Investigation of the Photodegradation of Reactive Blue 19 on P-25 Titanium Dioxide: Effect of Experimental Parameters. Australian Journal of Chemistry, 2015, 68, 471.	0.9	6
43	Control of Gold Nanostructure Morphology by Variation of Temperature and Reagent Ratios in the Turkevich Reaction. Australian Journal of Chemistry, 2015, 68, 858.	0.9	3
44	Size-optimized galactose-capped gold nanoparticles for the colorimetric detection of heat-labile enterotoxin at nanomolar concentrations. Organic and Biomolecular Chemistry, 2015, 13, 5215-5223.	2.8	18
45	Effect of Gold Nanoclusters on the Production of Ti3+ Defect Sites in Titanium Dioxide Nanoparticles under Ultraviolet and Soft X-ray Radiation. Journal of Physical Chemistry C, 2015, 119, 11171-11177.	3.1	14
46	Toward Control of Gold Cluster Aggregation on TiO ₂ via Surface Treatments. Journal of Physical Chemistry C, 2015, 119, 24465-24474.	3.1	39
47	Influence of gold nanoparticle loading in Au/C on the activity towards electrocatalytic glycerol oxidation. Electrochimica Acta, 2015, 153, 370-378.	5.2	27
48	Visible-Light-Driven Aerobic Oxidation of Amines to Nitriles over Hydrous Ruthenium Oxide Supported on TiO ₂ . ACS Catalysis, 2015, 5, 34-38.	11.2	61
49	Factors influencing the catalytic oxidation of benzyl alcohol using supported phosphine-capped gold nanoparticles. Catalysis Science and Technology, 2015, 5, 1323-1333.	4.1	65
50	Hydrothermal rutile to anatase reverse phase transformation. International Journal of Nanotechnology, 2014, 11, 493.	0.2	4
51	Phosphine-stabilised Au9 clusters interacting with titania and silica surfaces: The first evidence for the density of states signature of the support-immobilised cluster. Journal of Chemical Physics, 2014, 141, 014702.	3.0	28
52	Influence of particle size on the electrocatalytic oxidation of glycerol over carbon-supported gold nanoparticles. Electrochimica Acta, 2014, 120, 398-407.	5.2	37
53	Tuning the selectivity of a supported gold catalyst in solvent- and radical initiator-free aerobic oxidation of cyclohexene. Catalysis Science and Technology, 2014, 4, 752-757.	4.1	28
54	XPS and NEXAFS study of fluorine modified TiO2 nano-ovoids reveals dependence of Ti3+ surface population on the modifying agent. RSC Advances, 2014, 4, 20649.	3.6	37

#	Article	IF	CITATIONS
55	Identification of the Vibrational Modes in the Far-Infrared Spectra of Ruthenium Carbonyl Clusters and the Effect of Gold Substitution. Inorganic Chemistry, 2014, 53, 4340-4349.	4.0	12
56	Catalytic consequences of charge-balancing cations in zeolite during photo-Fenton oxidation of formaldehyde in alkaline conditions. Separation and Purification Technology, 2014, 125, 269-274.	7.9	14
57	Rearrangement of chiral 1-bromo-N-nitrobicyclo[2.2.1]heptan-2-imines. Tetrahedron: Asymmetry, 2013, 24, 817-821.	1.8	2
58	Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films. International Journal of Hydrogen Energy, 2013, 38, 12865-12877.	7.1	18
59	Establishing a Au Nanoparticle Size Effect in the Oxidation of Cyclohexene Using Gradually Changing Au Catalysts. ACS Catalysis, 2013, 3, 2986-2991.	11.2	77
60	The effect of MnO2 loading on the glycerol electrooxidation activity of Au/MnO2/C catalysts. Electrochimica Acta, 2013, 98, 208-217.	5.2	29
61	Chemically-synthesised, atomically-precise gold clusters deposited and activated on titania. Physical Chemistry Chemical Physics, 2013, 15, 3917.	2.8	111
62	Far-infrared absorption spectra of synthetically-prepared, ligated metal clusters with Au6, Au8, Au9 and Au6Pd metal cores. RSC Advances, 2013, 3, 22140.	3.6	30
63	Transparent, photocatalytic, titania thin films formed at low temperature. Current Applied Physics, 2013, 13, 142-147.	2.4	13
64	Optical characterisation of nanostructured Au/WO3 thin films for sensing hydrogen at low concentrations. Sensors and Actuators B: Chemical, 2013, 179, 125-130.	7.8	45
65	Growth of Carbon Nanotubes on Mesoporous Silica Coated Planar and Three-Dimensional Surfaces. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	0
66	Current density enhancement in inverted nanopyramid textured crystalline silicon solar cell using gold nanoparticles. Proceedings of SPIE, 2013, , .	0.8	0
67	Chemically synthesised atomically precise gold clusters deposited and activated on titania. Part II. Physical Chemistry Chemical Physics, 2013, 15, 14806.	2.8	78
68	Platinum-Ruthenium Nanoparticles: Active and Selective Catalysts for Hydrogenation of Phenylacetylene. Australian Journal of Chemistry, 2012, 65, 1420.	0.9	8
69	Diastereospecific ring cleavage of bornane-2,3-dione in the Bucherer-Bergs reaction. Tetrahedron: Asymmetry, 2012, 23, 1080-1083.	1.8	5
70	A route to a wide range of cyclopentanecarboxylic acids via 4-substituted camphors. Tetrahedron, 2012, 68, 1972-1978.	1.9	7
71	Stable colloidal Co–Pd nanocatalysts for carbon nanotube growth. Physica Status Solidi (B): Basic Research, 2009, 246, 2436-2439.	1.5	6
72	A computational study of a novel seven-membered cyclic diyne and its cobalt–carbonyl complex. Computational and Theoretical Chemistry, 2009, 909, 111-115.	1.5	0

#	Article	IF	CITATIONS
73	Self-cyclisation versus diynediol-promoted ring closure during the construction of coordinated crown-type macrocycles. Polyhedron, 2008, 27, 167-174.	2.2	5
74	Study of ferrocenyl-substituted Co2(CO)6-bispropargylic alcohol complexes as substrates for the formation of chains and macrocycles. Journal of Organometallic Chemistry, 2008, 693, 2683-2692.	1.8	10
75	Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature, 2008, 454, 981-983.	27.8	1,242
76	Catalytic growth of carbon nanotubes on stainless steel: Characterization and frictional properties. Diamond and Related Materials, 2008, 17, 1853-1857.	3.9	31
77	From straight chain to macrocyclic complexes containing mixed sulfur/nitrogen donors and coordinated 1,3-diynes. Journal of Organometallic Chemistry, 2007, 692, 4985-4994.	1.8	5
78	Selective growth of vertically aligned carbon nanofibres in sub-micron patterns and Raman mapping of produced arrays. Diamond and Related Materials, 2006, 15, 1023-1028.	3.9	7
79	Single-Step Conversion of Dimethyl Terephthalate into Cyclohexanedimethanol with Ru5PtSn, a Trimetallic Nanoparticle Catalyst. Angewandte Chemie - International Edition, 2006, 45, 4782-4785.	13.8	148
80	Uniform and selective CVD growth of carbon nanotubes and nanofibres on arbitrarily microstructured silicon surfaces. Nanotechnology, 2006, 17, 1397-1403.	2.6	14
81	Low temperature synthesis of carbon nanofibres on carbon fibre matrices. Carbon, 2005, 43, 2643-2648.	10.3	60
82	Highly efficient catalysts for the hydrogenation of nitro-substituted aromatics. Chemical Communications, 2005, , 2026.	4.1	76
83	Nickel Formate Route to the Growth of Carbon Nanotubes ChemInform, 2005, 36, no.	0.0	0
84	Production of Carbon Nanofibers in High Yields Using a Sodium Chloride Support ChemInform, 2005, 36, no.	0.0	0
85	Catalyst patterning methods for surface-bound chemical vapor deposition of carbon nanotubes. Applied Physics A: Materials Science and Processing, 2005, 81, 1559-1567.	2.3	23
86	Submicron patterning of Co colloid catalyst for growth of vertically aligned carbon nanotubes. Nanotechnology, 2005, 16, 1636-1640.	2.6	27
87	Wet catalyst assisted growth of carbon nanofibers on complex three-dimensional substrates. Diamond and Related Materials, 2005, 14, 733-738.	3.9	22
88	Production of Carbon Nanofibers in High Yields Using a Sodium Chloride Support. Journal of Physical Chemistry B, 2005, 109, 16665-16670.	2.6	24
89	Synthesis and Properties of a New Range of Mixed-Donor Alkynyl Ferrocenophanes. Organometallics, 2005, 24, 628-637.	2.3	13
90	Growth of aligned carbon nanofibres over large areas using colloidal catalysts at low temperatures. Chemical Communications, 2004, , 1416.	4.1	28

#	Article	IF	CITATIONS
91	Synthesis of cobalt-containing cyclophanes, and the formation of an unprecedented seven-membered cyclic diyneElectronic supplementary information (ESI) available: crystallographic data for complexes 8 and 11. See http://www.rsc.org/suppdata/nj/b3/b310515f/. New Journal of Chemistry, 2004, 28, 527.	2.8	18
92	Nickel Formate Route to the Growth of Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 18446-18450.	2.6	32
93	Double dehydration of a diynediol promoted by a single Co2(CO)6unit; activation of an uncoordinated propargylic centre. New Journal of Chemistry, 2002, 26, 1706-1708.	2.8	8
94	Methanol tolerant Oxygen Reduction Reaction electrocatalysis using Size‧pecific Triphenylphosphine‣igated Gold Nanoclusters. ChemNanoMat, 0, , .	2.8	2