Benjamin Gourion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/367866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A dual legumeâ€rhizobium transcriptome of symbiotic nodule senescence reveals coordinated plant and bacterial responses. Plant, Cell and Environment, 2022, 45, 3100-3121.	5.7	9
2	<i>Medicago</i> - <i>Sinorhizobium</i> - <i>Ralstonia</i> : A Model System to Investigate Pathogen-Triggered Inhibition of Nodulation. Molecular Plant-Microbe Interactions, 2021, 34, 499-503.	2.6	6
3	Bradyrhizobium diazoefficiens USDA110 Nodulation of Aeschynomene afraspera Is Associated with Atypical Terminal Bacteroid Differentiation and Suboptimal Symbiotic Efficiency. MSystems, 2021, 6, .	3.8	4
4	Avoidance of detrimental defense responses in beneficial plant–microbe interactions. Current Opinion in Biotechnology, 2021, 70, 266-272.	6.6	8
5	Legumes tolerance to rhizobia is not always observed and not always deserved. Cellular Microbiology, 2020, 22, e13124.	2.1	22
6	Medicago-Sinorhizobium-Ralstonia Co-infection Reveals Legume Nodules as Pathogen Confined Infection Sites Developing Weak Defenses. Current Biology, 2020, 30, 351-358.e4.	3.9	23
7	Legume Nodules: Massive Infection in the Absence of Defense Induction. Molecular Plant-Microbe Interactions, 2019, 32, 35-44.	2.6	31
8	Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia. New Phytologist, 2018, 219, 310-323.	7.3	46
9	Strain-Specific Symbiotic Genes: A New Level of Control in the Intracellular Accommodation of Rhizobia Within Legume Nodule Cells. Molecular Plant-Microbe Interactions, 2018, 31, 287-288.	2.6	9
10	DNA double-strand break repair is involved in desiccation resistance of Sinorhizobium meliloti, but is not essential for its symbiotic interaction with Medicago truncatula. Microbiology (United Kingdom), 2017, 163, 333-342.	1.8	16
11	Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense. PLoS ONE, 2017, 12, e0174576.	2.5	67
12	Terminal bacteroid differentiation in the legumeâ^'rhizobium symbiosis: noduleâ€specific cysteineâ€rich peptides and beyond. New Phytologist, 2016, 211, 411-417.	7.3	105
13	Multiple steps control immunity during the intracellular accommodation of rhizobia. Journal of Experimental Botany, 2015, 66, 1977-1985.	4.8	63
14	Rhizobium–legume symbioses: the crucial role of plant immunity. Trends in Plant Science, 2015, 20, 186-194.	8.8	279
15	A Proteomic Approach of Bradyrhizobium/Aeschynomene Root and Stem Symbioses Reveals the Importance of the fixA Locus for Symbiosis. International Journal of Molecular Sciences, 2014, 15, 3660-3670.	4.1	34
16	A non <scp>RD</scp> receptorâ€like kinase prevents nodule early senescence and defenseâ€like reactions during symbiosis. New Phytologist, 2014, 203, 1305-1314.	7.3	97
17	Growth Conditions Determine the DNF2 Requirement for Symbiosis. PLoS ONE, 2014, 9, e91866.	2.5	34
18	<i>Medicago truncatula </i> <scp>DNF</scp> 2 is a <scp>PI</scp> â€ <scp>PLC</scp> â€ <scp>XD</scp> â€eontaining protein required for bacteroid persistence and prevention of nodule early senescence and defenseâ€ike reactions. New Phytologist, 2013, 197, 1250-1261.	7.3	128

#	Article	IF	CITATIONS
19	Failure of self-control. Plant Signaling and Behavior, 2013, 8, e23915.	2.4	7
20	To be or <i>noot</i> to be. Plant Signaling and Behavior, 2013, 8, e24969.	2.4	15
21	Bacterial RuBisCO Is Required for Efficient Bradyrhizobium/Aeschynomene Symbiosis. PLoS ONE, 2011, 6, e21900.	2.5	34
22	Large-Scale Transposon Mutagenesis of Photosynthetic <i>Bradyrhizobium</i> Sp. Strain ORS278 Reveals New Genetic Loci Putatively Important for Nod-Independent Symbiosis with <i>Aeschynomene indica</i> . Molecular Plant-Microbe Interactions, 2010, 23, 760-770.	2.6	54
23	Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources. PLoS ONE, 2009, 4, e5584.	2.5	204
24	The PhyRâ€ijf ^{EcfG} signalling cascade is involved in stress response and symbiotic efficiency in <i>Bradyrhizobium japonicum</i> . Molecular Microbiology, 2009, 73, 291-305.	2.5	103
25	Sigma factor mimicry involved in regulation of general stress response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3467-3472.	7.1	121
26	PhyR Is Involved in the General Stress Response of <i>Methylobacterium extorquens</i> AM1. Journal of Bacteriology, 2008, 190, 1027-1035.	2.2	94
27	A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13186-13191.	7.1	142