Innocenzo M Pinto

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3678525/innocenzo-m-pinto-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

263 papers

41,510 citations

75 h-index 203 g-index

283 ext. papers

49,305 ext. citations

5.3 avg, IF

6.01 L-index

#	Paper	IF	Citations
263	Estimating the Chirp Mass of Eccentric Inspiraling Binary Systems from Time-Frequency Representations of their Gravitational Radiation. <i>Journal of Physics: Conference Series</i> , 2021 , 2081, 0120	008 ³	
262	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
261	Emergence and Evolution of Crystallization in TiO Thin Films: A Structural and Morphological Study. <i>Nanomaterials</i> , 2021 , 11,	5.4	4
260	Ternary quarter wavelength coatings for gravitational wave detector mirrors: Design optimization via exhaustive search. <i>Physical Review Research</i> , 2021 , 3,	3.9	1
259	Triangular Norms for Gravitational Wave Data Fusion. IEEE Transactions on Fuzzy Systems, 2020, 28, 534	I- 5 43	1
258	Stepped beam pipes and helical baffles for scattered light absorption in future gravitational wave detectors. <i>Review of Scientific Instruments</i> , 2020 , 91, 054505	1.7	0
257	Model comparison from LIGOVirgo data on GW170817I binary components and consequences for the merger remnant. <i>Classical and Quantum Gravity</i> , 2020 , 37, 045006	3.3	69
256	An arm length stabilization system for KAGRA and future gravitational-wave detectors. <i>Classical and Quantum Gravity</i> , 2020 , 37, 035004	3.3	5
255	The advanced Virgo longitudinal control system for the O2 observing run. <i>Astroparticle Physics</i> , 2020 , 116, 102386	2.4	7
254	On the application of T-norms to gravitational wave data fusion: A confirmatory study. <i>International Journal of Approximate Reasoning</i> , 2019 , 113, 372-390	3.6	
253	On the performance limits of coatings for gravitational wave detectors made of alternating layers of two materials. <i>Optical Materials</i> , 2019 , 96, 109269	3.3	5
252	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. <i>Physical Review D</i> , 2019 , 99,	4.9	17
251	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. <i>Astrophysical Journal</i> , 2019 , 871, 90	4.7	22
250	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal</i> , 2019 , 875, 160	4.7	60
249	Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO. <i>Physical Review D</i> , 2019 , 99,	4.9	58
248	Interferometric SAR Phase Denoising Using Proximity-Based K-SVD Technique. Sensors, 2019, 19,	3.8	7
247	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. <i>Physical Review D</i> , 2019 , 100,	4.9	39

(2018-2019)

246	First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. <i>Classical and Quantum Gravity</i> , 2019 , 36, 165008	3.3	34
245	Tests of General Relativity with GW170817. <i>Physical Review Letters</i> , 2019 , 123, 011102	7.4	204
244	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. <i>Astrophysical Journal</i> , 2019 , 883, 149	4.7	36
243	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. <i>Physical Review D</i> , 2019 , 100,	4.9	39
242	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
241	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22
240	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. <i>Astrophysical Journal</i> , 2019 , 886, 75	4.7	21
239	Properties of the Binary Neutron Star Merger GW170817. <i>Physical Review X</i> , 2019 , 9,	9.1	423
238	KAGRA: 2.5 generation interferometric gravitational wave detector. <i>Nature Astronomy</i> , 2019 , 3, 35-40	12.1	164
237	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62
236	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
235	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
234	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50
233	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
232	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. <i>Physical Review D</i> , 2018 , 97,	4.9	77
231	Optical scattering measurements and implications on thermal noise in Gravitational Wave detectors test-mass coatings. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2018 , 382, 2259-2264	2.3	3
230	A Multi-Step Approach to Assessing LIGO Test Mass Coatings. <i>Journal of Physics: Conference Series</i> , 2018 , 957, 012010	0.3	1
229	Construction of KAGRA: an underground gravitational-wave observatory. <i>Progress of Theoretical and Experimental Physics</i> , 2018 , 2018,	5.4	57

228	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37
227	Constraints on cosmic strings using data from the first Advanced LIGO observing run. <i>Physical Review D</i> , 2018 , 97,	4.9	60
226	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2
225	Optical properties of amorphous SiO2-TiO2 multi-nanolayered coatings for 1064-nm mirror technology. <i>Optical Materials</i> , 2018 , 75, 94-101	3.3	15
224	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49
223	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
222	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
221	Exploring the sensitivity of next generation gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2017 , 34, 044001	3.3	454
220	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54
219	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74
218	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. <i>Physical Review D</i> , 2017 , 95,	4.9	60
217	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
216	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
215	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
214	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
213	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
212	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35
211	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413

(2017-2017)

210	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
209	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
208	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
207	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
206	Quantum correlation measurements in interferometric gravitational-wave detectors. <i>Physical Review A</i> , 2017 , 95,	2.6	9
205	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
204	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
203	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32
202	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. <i>Physical Review Letters</i> , 2017 , 118, 151102	7.4	18
201	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
200	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L39	7.9	127
199	Effects of transients in LIGO suspensions on searches for gravitational waves. <i>Review of Scientific Instruments</i> , 2017 , 88, 124501	1.7	4
198	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. <i>Astrophysical Journal Letters</i> , 2017 , 850, L35	7.9	104
197	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
196	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
195	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47
194	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39
193	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54

192	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50
191	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
190	Locally optimum network detectors of unmodeled gravitational wave bursts in glitch noise. <i>Physical Review D</i> , 2017 , 95,	4.9	3
189	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
188	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
187	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
186	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOB FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
185	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76
184	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
183	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
182	Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. <i>Physical Review D</i> , 2016 , 93,	4.9	208
181	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
180	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
179	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80
178	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
177	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
176	SUPPLEMENT: IOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914[[2016, ApJL, 826, L13]). Astrophysical Journal, Supplement Series, 2016 , 225, 8	8	38
175	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94

174	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101	7.4	837
173	Properties of the Binary Black Hole Merger GW150914. <i>Physical Review Letters</i> , 2016 , 116, 241102	7.4	515
172	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
171	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
170	Free-Space Antenna Pattern Retrieval in Nonideal Reverberation Chambers. <i>IEEE Transactions on Electromagnetic Compatibility</i> , 2016 , 58, 673-677	2	3
169	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
168	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
167	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
166	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14	8	52
165	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
164	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89
163	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29
162	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
161	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26
160	Material loss angles from direct measurements of broadband thermal noise. <i>Physical Review D</i> , 2015 , 91,	4.9	21
159	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38
158	Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	790
157	Advanced LIGO. Classical and Quantum Gravity, 2015 , 32, 074001	3.3	1098

156	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58
155	Sparsifying time-frequency distributions for gravitational wave data analysis 2015,		O
154	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
153	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27
152	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014 , 785, 119	4.7	109
151	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. <i>Classical and Quantum Gravity</i> , 2014 , 31, 085014	3.3	18
150	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34
149	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005 2 010. <i>Physical Review D</i> , 2014 , 89,	4.9	26
148	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
147	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32
146	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25
145	. IEEE Transactions on Plasma Science, 2014 , 42, 2236-2244	1.3	6
144	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014 , 211, 7	8	51
143	Thickness-dependent crystallization on thermal anneal for titania/silica nm-layer composites deposited by ion beam sputter method. <i>Optics Express</i> , 2014 , 22, 29847-54	3.3	23
142	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54
141	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59
140	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	7:4	74
139	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. <i>Physical Review D</i> , 2014 , 90,	4.9	25

138	NEURAL NETWORK AIDED GLITCH-BURST DISCRIMINATION AND GLITCH CLASSIFICATION. International Journal of Modern Physics C, 2013 , 24, 1350084	1.1	16
137	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009\(\mathbb{Q}\)010. <i>Physical Review D</i> , 2013 , 87,	4.9	91
136	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
135	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. <i>Nature Photonics</i> , 2013 , 7, 613-619	33.9	572
134	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 008-008	6.4	29
133	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84
132	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88,	4.9	122
131	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57
130	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. <i>Astrophysical Journal</i> , 2012 , 755, 2	4.7	53
129	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> , 2012 , 85,	4.9	96
128	Search for gravitational waves from intermediate mass binary black holes. <i>Physical Review D</i> , 2012 , 85,	4.9	46
127	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600¶000 Hz. <i>Physical Review D</i> , 2012 , 85,	4.9	40
126	Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85,	4.9	172
125	Publisher Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D 83, 042001 (2011)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2
124	All-sky search for periodic gravitational waves in the full S5 LIGO data. <i>Physical Review D</i> , 2012 , 85,	4.9	61
123	Publisher Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D 82, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2
122	Short-Pulsed Wavepacket Propagation in Ray-Chaotic Enclosures. <i>IEEE Transactions on Antennas and Propagation</i> , 2012 , 60, 3827-3837	4.9	1
121	Robust gravitational wave burst detection and source localization in a network of interferometers using cross-Wigner spectra. <i>Classical and Quantum Gravity</i> , 2012 , 29, 045001	3.3	1

120	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. <i>Astrophysical Journal, Supplement Series</i> , 2012 , 203, 28	8	57
119	The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and Quantum Gravity</i> , 2012 , 29, 155002	3.3	59
118	Publisher Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	3
117	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 541, A155	5.1	69
116	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94
115	Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71
114	NONLINEAR INTERACTION OF ELECTROMAGNETIC RADIATION AT THE CELL MEMBRANE LEVEL: RESPONSE TO STOCHASTIC FIELDS. <i>Progress in Electromagnetics Research B</i> , 2011 , 33, 45-67	0.7	1
113	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. <i>Astrophysical Journal Letters</i> , 2011 , 734, L35	7.9	47
112	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. <i>Astrophysical Journal</i> , 2011 , 737, 93	4.7	75
111	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. <i>Physical Review D</i> , 2011 , 83,	4.9	40
110	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. <i>Physical Review D</i> , 2011 , 83,	4.9	77
109	Blind source separation and Wigner-Ville transform as tools for the extraction of the gravitational wave signal. <i>Physical Review D</i> , 2011 , 83,	4.9	3
108	Directional limits on persistent gravitational waves using LIGO S5 science data. <i>Physical Review Letters</i> , 2011 , 107, 271102	7.4	85
107	A gravitational wave observatory operating beyond the quantum shot-noise limit. <i>Nature Physics</i> , 2011 , 7, 962-965	16.2	554
106	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. <i>Astrophysical Journal</i> , 2010 , 713, 671-685	4.7	140
105	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. <i>Physical Review D</i> , 2010 , 82,	4.9	100
104	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. <i>Physical Review D</i> , 2010 , 81,	4.9	81
103	Measurement of thermal noise in multilayer coatings with optimized layer thickness. <i>Physical Review D</i> , 2010 , 81,	4.9	35

102	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. <i>Classical and Quantum Gravity</i> , 2010 , 27, 173001	3.3	869
101	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. <i>Astrophysical Journal</i> , 2010 , 715, 1453	3- 1 : 7 61	79
100	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. <i>Astrophysical Journal</i> , 2010 , 715, 1438-1	452	54
99	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010 , 722, 1504-1513	4.7	95
98	A Thermal Model for Pulsed EM Field Exposure Effects in Cells at Nonthermal Levels. <i>IEEE Transactions on Plasma Science</i> , 2010 , 38, 149-155	1.3	16
97	Calibration of the LIGO gravitational wave detectors in the fifth science run. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2010 , 624, 223-240	1.2	108
96	All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data. <i>Physical Review Letters</i> , 2009 , 102, 111102	7.4	77
95	Detecting unmodeled GW bursts in non-Gaussian (glitchy) noise: two locally optimum network detectors. <i>Classical and Quantum Gravity</i> , 2009 , 26, 204001	3.3	2
94	Locally optimum network detection of unmodelled gravitational wave bursts in an impulsive noise background. <i>Classical and Quantum Gravity</i> , 2009 , 26, 045003	3.3	6
93	Observation of a kilogram-scale oscillator near its quantum ground state. <i>New Journal of Physics</i> , 2009 , 11, 073032	2.9	93
92	An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> , 2009 , 460, 990-4	50.4	267
91	Einstein@Home search for periodic gravitational waves in LIGO S4 data. <i>Physical Review D</i> , 2009 , 79,	4.9	77
90	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. <i>Physical Review D</i> , 2009 , 80,	4.9	71
89	LIGO: the Laser Interferometer Gravitational-Wave Observatory. <i>Reports on Progress in Physics</i> , 2009 , 72, 076901	14.4	822
88	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. <i>Physical Review D</i> , 2009 , 80,	4.9	73
87	First LIGO search for gravitational wave bursts from cosmic (super)strings. <i>Physical Review D</i> , 2009 , 80,	4.9	43
86	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGOE fifth science run. <i>Physical Review D</i> , 2009 , 80,	4.9	100
85	Search for gravitational waves from low mass binary coalescences in the first year of LIGO S5 data. <i>Physical Review D</i> , 2009 , 79,	4.9	115

84	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. <i>Physical Review D</i> , 2009 , 80,	4.9	36
83	Search for high frequency gravitational-wave bursts in the first calendar year of LIGOE fifth science run. <i>Physical Review D</i> , 2009 , 80,	4.9	31
82	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009 , 701, L68-L74	4.7	40
81	A Study of Ray-Chaotic Cylindrical Scatterers. <i>IEEE Transactions on Antennas and Propagation</i> , 2008 , 56, 2638-2648	4.9	2
80	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. <i>Physical Review D</i> , 2008 , 77,	4.9	55
79	All-sky search for periodic gravitational waves in LIGO S4 data. <i>Physical Review D</i> , 2008 , 77,	4.9	98
78	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. <i>Physical Review D</i> , 2008 , 78,	4.9	51
77	Modeling the impulsive noise component and its effect on the operation of a simple coherent network algorithm for detecting unmodeled gravitational wave bursts. <i>Classical and Quantum Gravity</i> , 2008 , 25, 075013	3.3	12
76	Astrophysically triggered searches for gravitational waves: status and prospects. <i>Classical and Quantum Gravity</i> , 2008 , 25, 114051	3.3	24
75	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. <i>Classical and Quantum Gravity</i> , 2008 , 25, 245008	3.3	19
74	A joint search for gravitational wave bursts with AURIGA and LIGO. <i>Classical and Quantum Gravity</i> , 2008 , 25, 095004	3.3	15
73	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. <i>Physical Review D</i> , 2008 , 77,	4.9	117
72	Search for gravitational-wave bursts from soft gamma repeaters. <i>Physical Review Letters</i> , 2008 , 101, 211102	7.4	64
71	Implications for the Origin of GRB 070201 from LIGO Observations. <i>Astrophysical Journal</i> , 2008 , 681, 1419-1430	4.7	126
70	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. <i>Astrophysical Journal</i> , 2008 , 683, L45-L49	4.7	148
69	Filtering properties of defect-bearing periodic and triadic cantor multilayers. <i>Optics Communications</i> , 2008 , 281, 633-639	2	13
68	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. <i>Physical Review D</i> , 2007 , 76,	4.9	116
67	Upper limit map of a background of gravitational waves. <i>Physical Review D</i> , 2007 , 76,	4.9	85

(2004-2007)

66	Search for gravitational wave radiation associated with the pulsating tail of the SGR 180620 hyperflare of 27 December 2004 using LIGO. <i>Physical Review D</i> , 2007 , 76,	4.9	48
65	Radiation from Fibonacci-type Quasiperiodic Arrays on Dielectric Substrates. <i>Journal of Electromagnetic Waves and Applications</i> , 2007 , 21, 1231-1245	1.3	3
64	Search for gravitational-wave bursts in LIGO data from the fourth science run. <i>Classical and Quantum Gravity</i> , 2007 , 24, 5343-5369	3.3	70
63	Upper limits on gravitational wave emission from 78 radio pulsars. <i>Physical Review D</i> , 2007 , 76,	4.9	109
62	Perspectives on beam-shaping optimization for thermal-noise reduction in advanced gravitational-wave interferometric detectors: Bounds, profiles, and critical parameters. <i>Physical Review D</i> , 2007 , 76,	4.9	3
61	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. <i>Physical Review D</i> , 2007 , 76,	4.9	33
60	Scattering Properties of One-Dimensional Aperiodically-Ordered Strip Arrays Based on Two-Symbol Substitutional Sequences. <i>IEEE Transactions on Antennas and Propagation</i> , 2007 , 55, 1554-1563	4.9	2
59	Metamaterial inclusions based on grid-graph Hamiltonian paths. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 2520-2524	1.2	3
58	Analytic structure of a family of hyperboloidal beams of potential interest for advanced LIGO. <i>Physical Review D</i> , 2006 , 73,	4.9	8
57	Optimized multilayer dielectric mirror coatings for gravitational wave interferometers 2006,		17
56	. IEEE Antennas and Propagation Magazine, 2005 , 47, 62-81	1.7	16
55	Parameterizing quasi-periodicity: generalized Poisson summation and its application to modified-Fibonacci antenna arrays. <i>IEEE Transactions on Antennas and Propagation</i> , 2005 , 53, 2044-205	3 ^{4.9}	8
54	Radiation properties of one-dimensional random-like antenna arrays based on Rudin-Shapiro sequences. <i>IEEE Transactions on Antennas and Propagation</i> , 2005 , 53, 3568-3575	4.9	5
53	Free-space antenna field/pattern retrieval in reverberation environments. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2005 , 4, 329-332	3.8	17
52	. IEEE Transactions on Antennas and Propagation, 2005 , 53, 753-765	4.9	6
51	Radiation properties of planar antenna arrays based on certain categories of aperiodic tilings. <i>IEEE Transactions on Antennas and Propagation</i> , 2005 , 53, 635-644	4.9	63
50	Improved Design if Waveguide Slot Array Applicators For Microwave Heating. <i>Materials Research Innovations</i> , 2004 , 8, 71-74	1.9	5
49	How many templates for GW chirp detection? The minimal-match issue revisited. <i>Classical and Quantum Gravity</i> , 2004 , 21, 4955-4961	3.3	3

48	Correlator bank detection of gravitational wave chirps Balse-alarm probability, template density, and thresholds: Behind and beyond the minimal-match issue. <i>Physical Review D</i> , 2004 , 70,	4.9	4
47	Rejection properties of stochastic-resonance-based detectors of weak harmonic signals. <i>Physical Review E</i> , 2004 , 69, 062104	2.4	4
46	. IEEE Transactions on Antennas and Propagation, 2004 , 52, 1167-1179	4.9	
45	Microwaves in soil remediation from VOCs. 2. Buildup of a dedicated device. <i>AICHE Journal</i> , 2004 , 50, 722-732	3.6	17
44	On the reflection coefficient properties of optical-Cantor prefractal multilayers 2004,		1
43	On Wave Dynamics Pertaining to Structures with Aperiodic Order. <i>Springer Proceedings in Physics</i> , 2004 , 55-64	0.2	
42	Toward a Full-Wave-Based Electromagnetics Approach to Chaotic Footprints in a Complex Deterministic Environment: A Test Model With Coupled Floquet-Type and Ducted-Type Mode Characteristics. <i>Springer Proceedings in Physics</i> , 2004 , 137-149	0.2	
41	Gravitational wave chirp search: no-signal cumulative distribution of the maximum likelihood detection statistic. <i>Classical and Quantum Gravity</i> , 2003 , 20, S803-S813	3.3	3
40	Self-scaling properties of the reflection coefficient of Cantor prefactal multilayers. <i>Microwave and Optical Technology Letters</i> , 2003 , 37, 339-343	1.2	22
39	A dual-band Chebyshev impedance transformer. <i>Microwave and Optical Technology Letters</i> , 2003 , 39, 141-145	1.2	10
38	Computation of hyperngeometric functions for gravitationally radiating binary stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2002 , 334, 855-858	4.3	7
37	Optimum placement of post-1PN gravitational wave chirp templates made simple at any match level via Tanaka-Tagoshi coordinates. <i>Physical Review D</i> , 2002 , 65,	4.9	6
36	Fast and accurate computational tools for gravitational waveforms from binary stars with any orbital eccentricity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2001 , 325, 358-372	4.3	36
35	Tanaka-Tagoshi parametrization of post-first-post-Newtonian spin-free gravitational wave chirps: Equispaced and cardinal interpolated lattices for first generation interferometric antennas. <i>Physical Review D</i> , 2001 , 64,	4.9	5
34	More on the Tanaka-Tagoshi parametrization of post-1PN spin-free gravitational wave chirps: Equispaced and cardinal interpolated lattices. <i>Physical Review D</i> , 2001 , 64,	4.9	1
33	A simple algorithm for accurate location of leaky-wave poles for grounded inhomogeneous dielectric slabs 2000 , 24, 135-140		14
32	Analytical approximations for fundamental-mode field and dispersion equation of planar waveguides through the Stevenson Pad approach. <i>Microwave and Optical Technology Letters</i> , 2000 , 27, 158-162	1.2	2
31	Efficient Faulty Element Diagnostics of Large Antenna Arrays by Discrete Mean Field Neural Nets. <i>Progress in Electromagnetics Research</i> , 2000 , 25, 53-76	3.8	7

(1996-2000)

30	Gravitational wave chirp search: Economization of post-Newtonian matched filter bank via cardinal interpolation. <i>Physical Review D</i> , 2000 , 62,	4.9	8
29	Nearly minimum redundant correlator interpolation formula for gravitational wave chirp detection. <i>Physical Review D</i> , 2000 , 62,	4.9	8
28	Model for urban and indoor cellular propagation using percolation theory. <i>Physical Review E</i> , 2000 , 61, R2228-R2231	2.4	8
27	Derivation of higher-order impedance boundary conditions for stratified coatings composed of inhomogeneous-dielectric and homogeneous-bianisotropic layers. <i>Radio Science</i> , 2000 , 35, 287-303	1.4	3
26	Higher order impedance boundary conditions for metal-backed inhomogeneous dielectric layers 1999 , 22, 249-254		2
25	A model-based parameter estimation approach for numerical analysis of single-mode optical fibers. Journal of Lightwave Technology, 1999 , 17, 684-689	4	2
24	Electromagnetic chaos in mode-stirred reverberation enclosures. <i>IEEE Transactions on Electromagnetic Compatibility</i> , 1998 , 40, 185-192	2	22
23	Thermal and dielectric properties of thermal and microwave cured thermoset polymers. <i>Materials Research Innovations</i> , 1998 , 2, 28-32	1.9	5
22	A Generalized Donsker-kalFormula to Compute the Fundamental Modes in Complex Loaded Waveguides. <i>Electromagnetics</i> , 1998 , 18, 367-382	0.8	
21	Evaluation of stochastic-resonance-based detectors of weak harmonic signals in additive white Gaussian noise. <i>Physical Review E</i> , 1998 , 57, 6470-6479	2.4	76
20			
	Gaussian noise. <i>Physical Review E</i> , 1998 , 57, 6470-6479		
20	Gaussian noise. <i>Physical Review E</i> , 1998 , 57, 6470-6479 Experiments on fundamental physics on the space station. <i>Classical and Quantum Gravity</i> , 1997 , 14, 29 Cut-off Frequency and Dominant Eigenfunction Computation in Complex Dielectric Geometries via	71 ₃ 298	9 10
20	Gaussian noise. <i>Physical Review E</i> , 1998 , 57, 6470-6479 Experiments on fundamental physics on the space station. <i>Classical and Quantum Gravity</i> , 1997 , 14, 29 Cut-off Frequency and Dominant Eigenfunction Computation in Complex Dielectric Geometries via Donsker-KalFormula and Monte Carlo Method. <i>Electromagnetics</i> , 1997 , 17, 1-14 Wiener Integral Monte Carlo Approach to Analyze the Fundamental Mode in Complex Transmission	71 ₃ 2 ₉ 98 0.8	9 10
20 19 18	Experiments on fundamental physics on the space station. <i>Classical and Quantum Gravity</i> , 1997 , 14, 29 Cut-off Frequency and Dominant Eigenfunction Computation in Complex Dielectric Geometries via Donsker-KalFormula and Monte Carlo Method. <i>Electromagnetics</i> , 1997 , 17, 1-14 Wiener Integral Monte Carlo Approach to Analyze the Fundamental Mode in Complex Transmission Lines. <i>Electromagnetics</i> , 1997 , 17, 437-448 Path integral computation of lowest order modes in arbitrary-shaped inhomogeneous waveguides	71 ₃ 2 ₉ 98 0.8	9 10
20 19 18	Experiments on fundamental physics on the space station. <i>Classical and Quantum Gravity</i> , 1997 , 14, 29 Cut-off Frequency and Dominant Eigenfunction Computation in Complex Dielectric Geometries via Donsker-KalFormula and Monte Carlo Method. <i>Electromagnetics</i> , 1997 , 17, 1-14 Wiener Integral Monte Carlo Approach to Analyze the Fundamental Mode in Complex Transmission Lines. <i>Electromagnetics</i> , 1997 , 17, 437-448 Path integral computation of lowest order modes in arbitrary-shaped inhomogeneous waveguides 1997 , 7, 402-404 Exact solution of Peters-Mathews equations for any orbital eccentricity. <i>Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods</i> , 1996 ,	71 ₃ 2 ₉ 98 0.8	9 10
20 19 18 17 16	Experiments on fundamental physics on the space station. Classical and Quantum Gravity, 1997, 14, 29 Cut-off Frequency and Dominant Eigenfunction Computation in Complex Dielectric Geometries via Donsker-KalFormula and Monte Carlo Method. Electromagnetics, 1997, 17, 1-14 Wiener Integral Monte Carlo Approach to Analyze the Fundamental Mode in Complex Transmission Lines. Electromagnetics, 1997, 17, 437-448 Path integral computation of lowest order modes in arbitrary-shaped inhomogeneous waveguides 1997, 7, 402-404 Exact solution of Peters-Mathews equations for any orbital eccentricity. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1996, 111, 631-644 Gravitational-wave chirps: accumulating phase errors due to residual orbital eccentricity. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics	71 ₃ 2 ₉ 98 0.8 0.8	9 10 5

12	Radiation-pressure induced chaos in multipendular Fabry-Perot resonators. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1994 , 185, 14-20	2.3	5
11	A flexible simulation code for microwave curing of polymers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1993 , 68, 193-201		
10	SNR degradation in matched-filter detection of GW chirps from coalescing binaries due to neglect of the relativistic periastron advance. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1993 , 173, 121-125	2.3	2
9	Who is who in Nonlinear Electromagnetics. <i>Electromagnetics</i> , 1991 , 11, 281-308	0.8	5
8	The VIRGO Project: A wide band antenna for gravitational wave detection. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 1990 , 289, 518-525	1.2	407
7	. IEEE Transactions on Antennas and Propagation, 1988 , 36, 1492-1495	4.9	9
6	An information theory description of EM fields in complex environments. <i>IEEE Transactions on Instrumentation and Measurement</i> , 1987 , IM-36, 1020-1021	5.2	1
5	Volterra series solution of particle De-Bunching equation. <i>Lettere Al Nuovo Cimento Rivista Internazionale Della Societ</i> [Italiana Di Fisica, 1985 , 44, 573-578		1
4	Nonlinear propagation and scattering: analytical solution and symbolic code implementation. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1985 , 2, 997	1.8	6
3	Exact volterra-series computation of nonlinear polarization in optical media. <i>Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods</i> , 1982 , 70, 31-38		3
2	Waveguide slot applicators for microwave heating		1
1	Reflectivity and thickness optimization173-195		