Saà d Bouhallab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3678352/publications.pdf

Version: 2024-02-01

84 papers 3,399 citations

34 h-index 54 g-index

86 all docs 86 docs citations

86 times ranked 3249 citing authors

#	Article	IF	Citations
1	The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chemistry, 2015, 182, 224-235.	4.2	170
2	Milk proteins as encapsulation devices and delivery vehicles: Applications andÂtrends. Trends in Food Science and Technology, 2014, 37, 5-20.	7.8	165
3	Identification of C-terminal peptides of bovine \hat{l}^2 -casein that enhance proliferation of rat lymphocytes. Immunology Letters, 1992, 33, 41-46.	1.1	117
4	Bovine \hat{l}^2 -lactoglobulin/fatty acid complexes: binding, structural, and biological properties. Dairy Science and Technology, 2014, 94, 409-426.	2.2	107
5	Dietary bioactive peptides: Human studies. Critical Reviews in Food Science and Nutrition, 2017, 57, 335-343.	5.4	100
6	Biopeptides of milk: caseinophosphopeptides and mineral bioavailability. Reproduction, Nutrition, Development, 2004, 44, 493-498.	1.9	95
7	Modification of Bovine \hat{l}^2 -Lactoglobulin by Glycation in a Powdered State or in an Aqueous Solution: \hat{A} Effect on Association Behavior and Protein Conformation. Journal of Agricultural and Food Chemistry, 1999, 47, 83-91.	2.4	93
8	Stable monomeric intermediate with exposed Cys-119 is formed during heat denaturation of \hat{l}^2 -lactoglobulin. Biochemical and Biophysical Research Communications, 2003, 301, 465-471.	1.0	84
9	Heating and glycation of \hat{l}^2 -lactoglobulin and \hat{l}^2 -casein: Aggregation and in vitro digestion. Food Research International, 2014, 55, 70-76.	2.9	80
10	Influence of Various Phosphopeptides of Caseins on Iron Absorption. Journal of Agricultural and Food Chemistry, 2002, 50, 7127-7130.	2.4	79
11	Temperature Affects the Supramolecular Structures Resulting from α-Lactalbuminâ^'Lysozyme Interaction. Biochemistry, 2007, 46, 1248-1255.	1.2	79
12	Milk Proteins and Iron Absorption: Contrasting Effects of Different Caseinophosphopeptides. Pediatric Research, 2005, 58, 731-734.	1.1	75
13	Influence of pH on the dry heat-induced denaturation/aggregation of whey proteins. Food Chemistry, 2011, 129, 110-116.	4.2	73
14	Spectroscopic characterization of heat-induced nonnative \hat{l}^2 -lactoglobulin monomers. Protein Science, 2004, 13, 1340-1346.	3.1	70
15	Glycation of bovine beta-Lactoglobulin: effect on the protein structure. International Journal of Food Science and Technology, 1999, 34, 429-435.	1.3	68
16	Heteroprotein complex coacervation: A generic process. Advances in Colloid and Interface Science, 2017, 239, 115-126.	7.0	67
17	Polar lipid composition of bioactive dairy co-products buttermilk and butterserum: Emphasis on sphingolipid and ceramide isoforms. Food Chemistry, 2018, 240, 67-74.	4.2	66
18	Interactions between aroma compounds and \hat{l}^2 -lactoglobulin in the heat-induced molten globule state. Food Chemistry, 2010, 119, 1550-1556.	4.2	64

#	Article	IF	Citations
19	Bioavailability of caseinophosphopeptide-bound iron. Translational Research, 2002, 140, 290-294.	2.4	61
20	Yogurts enriched with milk proteins: Texture properties, aroma release and sensory perception. Trends in Food Science and Technology, 2020, 98, 140-149.	7.8	61
21	Spontaneous co-assembly of lactoferrin and \hat{l}^2 -lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocolloids, 2016, 57, 280-290.	5.6	57
22	Kinetics of lactose crystallization and crystal size as monitored by refractometry and laser light scattering: effect of proteins. Dairy Science and Technology, 2005, 85, 253-260.	0.9	52
23	Essential Oils in Livestock: From Health to Food Quality. Antioxidants, 2021, 10, 330.	2.2	51
24	Charge and Size Drive Spontaneous Self-Assembly of Oppositely Charged Globular Proteins into Microspheres. Journal of Physical Chemistry B, 2010, 114, 4138-4144.	1.2	50
25	Heat-Induced Covalent Complex between Casein Micelles and β-Lactoglobulin from Goat's Milk: Identification of an Involved Disulfide Bond. Journal of Agricultural and Food Chemistry, 2002, 50, 185-191.	2.4	49
26	Interfacial and foaming properties of sulfydryl-modified bovine \hat{l}^2 -lactoglobulin. Journal of Colloid and Interface Science, 2006, 302, 32-39.	5.0	46
27	Selective coacervation between lactoferrin and the two isoforms ofÂβ-lactoglobulin. Food Hydrocolloids, 2015, 48, 238-247.	5.6	44
28	Improvement of zinc intestinal absorption and reduction of zinc/iron interaction using metal bound to the caseinophosphopeptide 1-25 of β-casein. Reproduction, Nutrition, Development, 1998, 38, 465-472.	1.9	43
29	Adsorption of gastric lipase onto multicomponent model lipid monolayers with phase separation. Colloids and Surfaces B: Biointerfaces, 2016, 143, 97-106.	2.5	43
30	Current ways to modify the structure of whey proteins for specific functionalitiesâ€"a review. Dairy Science and Technology, 2015, 95, 795-814.	2.2	42
31	\hat{l}^2 -Lactoglobulin as a Molecular Carrier of Linoleate: Characterization and Effects on Intestinal Epithelial Cells in Vitro. Journal of Agricultural and Food Chemistry, 2012, 60, 9476-9483.	2.4	41
32	Formation of Stable Covalent Dimer Explains the High Solubility at pH 4.6 of Lactoseâ^'î²-Lactoglobulin Conjugates Heated near Neutral pH. Journal of Agricultural and Food Chemistry, 1999, 47, 1489-1494.	2.4	40
33	Heat-Induced Denaturation, Aggregation and Gelation of Whey Proteins. , 2016, , 155-178.		39
34	Glucose Slows Down the Heat-Induced Aggregation of \hat{l}^2 -Lactoglobulin at Neutral pH. Journal of Agricultural and Food Chemistry, 2012, 60, 214-219.	2.4	38
35	Modification of protein structures by altering the whey protein profile and heat treatment affects <i>in vitro</i> static digestion of model infant milk formulas. Food and Function, 2020, 11, 6933-6945.	2.1	36
36	Iron Tissue Storage and Hemoglobin Levels of Deficient Rats Repleted with Iron Bound to the Caseinophosphopeptide $1\hat{a}^2$ of \hat{l}^2 -Casein. Journal of Agricultural and Food Chemistry, 1999, 47, 2786-2790.	2.4	35

#	Article	IF	Citations
37	Bioavailability of caseinophosphopeptide bound iron in the young rat. Journal of Nutritional Biochemistry, 1997, 8, 190-194.	1.9	34
38	Formation and stability of α-lactalbumin–lysozyme spherical particles: Involvement of electrostatic forces. Food Hydrocolloids, 2009, 23, 510-518.	5.6	33
39	Molecular interaction between apo or holo \hat{l} ±-lactalbumin and lysozyme: Formation of heterodimers as assessed by fluorescence measurements. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 709-715.	1.1	33
40	Mixing milk, egg and plant resources to obtain safe and tasty foods with environmental and health benefits. Trends in Food Science and Technology, 2021, 108, 119-132.	7.8	32
41	Separation of small cationic bioactive peptides by strong ion-exchange chromatography. Journal of Chromatography A, 1996, 724, 137-145.	1.8	30
42	Kinetics of heat-induced denaturation of proteins in model infant milk formulas as a function of whey protein composition. Food Chemistry, 2020, 302, 125296.	4.2	30
43	Dynamic and supramolecular organisation of \hat{l}_{\pm} -lactalbumin/lysozyme microspheres: A microscopic study. Biophysical Chemistry, 2010, 146, 30-35.	1.5	29
44	Complexes between linoleate and native or aggregated \hat{l}^2 -lactoglobulin: Interaction parameters and in vitro cytotoxic effect. Food Chemistry, 2013, 141, 2305-2313.	4.2	29
45	Soft-Matter Approaches for Controlling Food Protein Interactions and Assembly. Annual Review of Food Science and Technology, 2019, 10, 521-539.	5.1	29
46	Modification of Bovine \hat{I}^2 -Lactoglobulin by Glycation in a Powdered State or in an Aqueous Solution: \hat{A} Immunochemical Characterization. Journal of Agricultural and Food Chemistry, 1999, 47, 4543-4548.	2.4	27
47	Apoâ€∫αâ€lactalbumin and lysozyme are colocalized in their subsequently formed spherical supramolecular assembly. FEBS Journal, 2007, 274, 6085-6093.	2.2	27
48	Kinetics and Structure during Self-Assembly of Oppositely Charged Proteins in Aqueous Solution. Biomacromolecules, 2011, 12, 1920-1926.	2.6	27
49	The physicochemical parameters during dry heating strongly influence the gelling properties of whey proteins. Journal of Food Engineering, 2012, 112, 296-303.	2.7	26
50	Improved absorption of caseinophosphopeptide-bound iron: role of alkaline phosphatase. Journal of Nutritional Biochemistry, 2005, 16, 398-401.	1.9	25
51	pH- and ionic strength-dependent interaction between cyanidin-3-O-glucoside and sodium caseinate. Food Chemistry, 2018, 267, 52-59.	4.2	23
52	Séchage des lactosérums et dérivés : rÃ1e du lactose et de la dynamique de l'eau. Dairy Science and Technology, 2004, 84, 243-268.	0.9	23
53	In vitro digestion of caseinophosphopeptide–iron complex. Journal of Dairy Research, 2000, 67, 125-129.	0.7	22
54	Reduction of iron/zinc interactions using metal bound to the caseinophosphopeptide 1–25 of β-casein. Nutrition Research, 1999, 19, 1655-1663.	1.3	21

#	Article	IF	CITATIONS
55	Binding of Folic Acid Induces Specific Self-Aggregation of Lactoferrin: Thermodynamic Characterization. Langmuir, 2015, 31, 12481-12488.	1.6	21
56	Determination of Exposed Sulfhydryl Groups in Heated \hat{l}^2 -Lactoglobulin A Using IAEDANS and Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2007, 55, 7107-7113.	2.4	20
57	Structural consequences of dry heating on alpha-lactalbumin and beta-lactoglobulin at pH 6.5. Food Research International, 2013, 51, 899-906.	2.9	20
58	Spontaneous Assembly and Induced Aggregation of Food Proteins. Advances in Polymer Science, 2013, , 67-101.	0.4	20
59	Structure and Dynamics of Heteroprotein Coacervates. Langmuir, 2016, 32, 7821-7828.	1.6	20
60	Scale-up production of vitamin loaded heteroprotein coacervates and their protective property. Journal of Food Engineering, 2017, 206, 67-76.	2.7	20
61	Protein structure in model infant milk formulas impacts their kinetics of hydrolysis under in vitro dynamic digestion. Food Hydrocolloids, 2022, 126, 107368.	5.6	20
62	Controlled whey protein aggregates to modulate the texture of fat-free set-type yoghurts. International Dairy Journal, 2019, 92, 28-36.	1.5	19
63	Investigation at Residue Level of the Early Steps during the Assembly of Two Proteins into Supramolecular Objects. Biomacromolecules, 2011, 12, 2200-2210.	2.6	18
64	Coacervates of whey proteins to protect and improve the oral delivery of a bioactive molecule. Journal of Functional Foods, 2017, 38, 197-204.	1.6	18
65	Contribution of temporal dominance of sensations performed by modality (M-TDS) to the sensory perception of texture and flavor in semi-solid products: A case study on fat-free strawberry yogurts. Food Quality and Preference, 2020, 80, 103789.	2.3	18
66	Caseinomacropeptide modifies the heat-induced denaturation–aggregation process of β-lactoglobulin. International Dairy Journal, 2014, 36, 55-64.	1.5	17
67	Unraveling the molecular mechanisms underlying interactions between caseins and lutein. Food Research International, 2020, 138, 109781.	2.9	16
68	Copper-catalyzed formation of disulfide-linked dimer of bovine $\langle b \rangle \hat{l}^2 \langle b \rangle$ -lactoglobulin. Dairy Science and Technology, 2004, 84, 517-525.	0.9	15
69	Iron and exercise induced alterations in antioxidant status. Protection by dietary milk proteins. Free Radical Research, 2006, 40, 535-542.	1.5	14
70	How the presence of a small molecule affects the complex coacervation between lactoferrin and \hat{l}^2 -lactoglobulin. International Journal of Biological Macromolecules, 2017, 102, 192-199.	3.6	14
71	Contrasting Assemblies of Oppositely Charged Proteins. Langmuir, 2019, 35, 9923-9933.	1.6	14
72	Physico-chemical behaviors of human and bovine milk membrane extracts and their influence on gastric lipase adsorption. Biochimie, 2020, 169, 95-105.	1.3	14

#	Article	IF	Citations
73	Structural characterization of heat-induced protein aggregates in model infant milk formulas. Food Hydrocolloids, 2020, 107, 105928.	5.6	14
74	Kinetics of the formation of \hat{l}^2 -casein/tannin mixed micelles. RSC Advances, 2012, 2, 3934.	1.7	13
75	Caseinophosphopeptide-Bound Iron: Protective Effect against Gut Peroxidation. Annals of Nutrition and Metabolism, 2008, 52, 177-180.	1.0	12
76	Aroma-retention capacities of functional whey protein aggregates: Study of a strawberry aroma in solutions and in fat-free yogurts. Food Research International, 2020, 136, 109491.	2.9	11
77	\hat{l}^2 -Lactoglobulin-linoleate complexes: In vitro digestion and the role of protein in fatty acid uptake. Journal of Dairy Science, 2013, 96, 4258-4268.	1.4	10
78	Effect of Caseinophosphopeptides from \hat{l}_{\pm} (sub>s- and \hat{l}_{\pm} -Casein on Iron Bioavailability in HuH7 Cells. Journal of Agricultural and Food Chemistry, 2015, 63, 6757-6763.	2.4	10
79	Proteins for the future: A soft matter approach to link basic knowledge and innovative applications. Innovative Food Science and Emerging Technologies, 2018, 46, 18-28.	2.7	10
80	Combining plant and dairy proteins in food colloid design. Current Opinion in Colloid and Interface Science, 2021, 56, 101507.	3.4	9
81	Effects of trace elements and calcium on diabetes and obesity, and their complications: Protective effect of dairy products – A mini-review. Dairy Science and Technology, 2009, 89, 213-218.	2.2	6
82	Rheological characterization of \hat{l}^2 -lactoglobulin/lactoferrin complex coacervates. LWT - Food Science and Technology, 2022, 163, 113577.	2.5	3
83	Application in nutrition: mineral binding. , 2021, , 455-494.		1
84	The Role of Proteins in the Development of Food Structure. Food Chemistry, Function and Analysis, 2019, , 29-58.	0.1	0