Shuyang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3677887/publications.pdf

Version: 2024-02-01

623188 610482 39 642 14 24 citations g-index h-index papers 39 39 39 499 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Study on Competitive Adsorption and Displacing Properties of CO2 Enhanced Shale Gas Recovery: Advances and Challenges. Geofluids, 2020, 2020, 1-15.	0.3	61
2	CO2 storage potential in major oil and gas reservoirs in the northern South China Sea. International Journal of Greenhouse Gas Control, 2021, 108, 103328.	2.3	53
3	Numerical simulation and optimization of injection rates and wells placement for carbon dioxide enhanced gas recovery using a genetic algorithm. Journal of Cleaner Production, 2021, 280, 124512.	4.6	46
4	Laboratory experiment of CO 2 –CH 4 displacement and dispersion in sandpacks in enhanced gas recovery. Journal of Natural Gas Science and Engineering, 2015, 26, 1585-1594.	2.1	45
5	Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments. Applied Energy, 2020, 262, 114559.	5.1	43
6	In Situ Local Contact Angle Measurement in a CO ₂ –Brine–Sand System Using Microfocused X-ray CT. Langmuir, 2017, 33, 3358-3366.	1.6	38
7	Pure methane, carbon dioxide, and nitrogen adsorption on anthracite from China over a wide range of pressures and temperatures: experiments and modeling. RSC Advances, 2015, 5, 52612-52623.	1.7	35
8	Techno-economic analysis of using carbon capture and storage (CCS) in decarbonizing China's coal-fired power plants. Journal of Cleaner Production, 2022, 351, 131384.	4.6	30
9	Accelerating gas production of the depressurization-induced natural gas hydrate by electrical heating. Journal of Petroleum Science and Engineering, 2022, 208, 109735.	2.1	28
10	Adsorption isotherms and kinetics of carbon dioxide on Chinese dry coal over a wide pressure range. Adsorption, 2015, 21, 53-65.	1.4	24
11	Poreâ€Scale Imaging and Analysis of Phase Topologies and Displacement Mechanisms for CO ₂ â€Brine Twoâ€Phase Flow in Unconsolidated Sand Packs. Water Resources Research, 2017, 53, 9127-9144.	1.7	19
12	CO ₂ /water two-phase flow in a two-dimensional micromodel of heterogeneous pores and throats. RSC Advances, 2016, 6, 73897-73905.	1.7	18
13	Experimental Investigation of CO2-CH4 Displacement and Dispersion in Sand Pack for Enhanced Gas Recovery. Energy Procedia, 2014, 61, 393-397.	1.8	16
14	Poreâ€scale investigation of effects of heterogeneity on CO ₂ geological storage using stratified sand packs., 2017, 7, 972-987.		14
15	Competitive Adsorption/Desorption of CH 4 /CO 2 /N 2 Mixture on Anthracite from China for ECBM Operation. Energy Procedia, 2017, 105, 4289-4294.	1.8	14
16	The horizontal dispersion properties of CO2-CH4 in sand packs with CO2 displacing the simulated natural gas. Journal of Natural Gas Science and Engineering, 2018, 50, 293-300.	2.1	14
17	Carbon capture and storage in the coastal region of China between Shanghai and Hainan. Energy, 2022, 247, 123470.	4.5	14
18	Density characteristics of CO2–CH4 binary mixtures at temperatures from (300 to 308.15)K and pressures from (2 to 18)MPa. Journal of Chemical Thermodynamics, 2017, 106, 1-9.	1.0	13

#	Article	IF	Citations
19	In situ measurement of the dispersion coefficient of liquid/supercritical CO ₂ –CH ₄ in a sandpack using CT. RSC Advances, 2016, 6, 42367-42376.	1.7	12
20	A numerical simulation study of methane hydrate reformation during the dissociation process induced by depressurization. Fuel, 2022, 313, 122983.	3.4	12
21	Machine learning assisted relative permeability upscaling for uncertainty quantification. Energy, 2022, 245, 123284.	4.5	11
22	Measurements of CO ₂ â€"H ₂ Oâ€"NaCl Solution Densities over a Wide Range of Temperatures, Pressures, and NaCl Concentrations. Journal of Chemical & Engineering Data, 2013, 58, 3342-3350.	1.0	10
23	Density and Volumetric Behavior of CO ₂ + Undecane System from 313.15 to 353.15 K and Pressures up to 19 MPa. Journal of Chemical & Engineering Data, 2016, 61, 3003-3012.	1.0	9
24	Competitive adsorption/desorption of CO2/CH4 mixtures on anthracite from China over a wide range of pressures and temperatures. RSC Advances, 2016, 6, 98588-98597.	1.7	9
25	Microwave-assisted high-efficient gas production of depressurization-induced methane hydrate exploitation. Energy, 2022, 247, 123353.	4.5	9
26	Densities of CO2/N2/O2 ternary mixtures at temperatures from (300.15 to 353.15) K and pressures from (5 to 18) MPa. Thermochimica Acta, 2019, 676, 20-26.	1.2	8
27	CO2/CH4 adsorption property on shale from China for ESGR operation. Energy Procedia, 2019, 158, 5396-5401.	1.8	6
28	Simulation on Effects of Injection Parameters on CO ₂ Enhanced Gas Recovery in a Heterogeneous Natural Gas Reservoir. Advanced Theory and Simulations, 2021, 4, 2100127.	1.3	6
29	Stochastic simplex approximation gradient for reservoir production optimization: Algorithm testing and parameter analysis. Journal of Petroleum Science and Engineering, 2022, 209, 109755.	2.1	5
30	Numerical Simulation and Optimization of CO2-Enhanced Gas Recovery in Homogeneous and Vertical Heterogeneous Reservoir Models. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	1.4	5
31	Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability. Energies, 2022, 15, 4524.	1.6	5
32	The density characteristics of CO 2 and alkane mixtures using PCâ€SAFT EoS. , 2020, 10, 1063-1076.		4
33	Density Behavior of CO2 + Decane Mixtures by Modified SAFT Equation of State. Energy Procedia, 2014, 61, 440-444.	1.8	2
34	Pore-scale Displacement Mechanisms Investigation in CO 2 -brine-glass Beads System. Energy Procedia, 2017, 105, 4122-4127.	1.8	2
35	Densities of the Binary System of Carbon Dioxide and Dodecane from (313 to 353) K and Pressures up to 18MPa. Energy Procedia, 2014, 61, 504-508.	1.8	1
36	Density Characteristics of the CO2–CH4 Binary System: Experimental Data at 313–353 K and 3–18 MPa and Modeling from the PC-SAFT EoS. Journal of Chemical & Engineering Data, 2018, , .	1.0	1

SHUYANG LIU

#	Article	IF	CITATIONS
37	Cover Picture: The density characteristics of CO ₂ and alkane mixtures using PCâ€SAFT EoS (Greenhouse Gas Sci Technol 5/2020). , 2020, 10, i.		O
38	A Novel Machine Learning Assisted Upscaling Workflow for Simulating the Waterflooding Process. , 2021, , .		O
39	HEAT TRANSFER MODELING OF CO2 IN THE WELLBORE AND AQUIFER DURING GEOLOGICAL SEQUESTRATION , 2018, , .		O