
## Teresa Simon-Yarza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3677877/publications.pdf Version: 2024-02-01



TERESA SIMON-YARZA

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Channeled polysaccharide-based hydrogel reveals influence of curvature to guide endothelial cell<br>arrangement in vessel-like structures. Materials Science and Engineering C, 2021, 118, 111369.                   | 3.8  | 13        |
| 2  | In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. Advanced Science, 2021, 8, e2100798.                                                                                                          | 5.6  | 50        |
| 3  | Tuning Physicochemical Properties of a Macroporous Polysaccharide-Based Scaffold for 3D Neuronal<br>Culture. International Journal of Molecular Sciences, 2021, 22, 12726.                                           | 1.8  | 3         |
| 4  | Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Advanced Healthcare<br>Materials, 2020, 9, e2000707.                                                                                           | 3.9  | 91        |
| 5  | Metal–Organic Framework Microsphere Formulation for Pulmonary Administration. ACS Applied<br>Materials & Interfaces, 2020, 12, 25676-25682.                                                                          | 4.0  | 20        |
| 6  | Development of 3D Hepatic Constructs Within Polysaccharide-Based Scaffolds with Tunable<br>Properties. International Journal of Molecular Sciences, 2020, 21, 3644.                                                  | 1.8  | 14        |
| 7  | Bimodal Fucoidan-Coated Zinc Oxide/Iron Oxide-Based Nanoparticles for the Imaging of Atherothrombosis. Molecules, 2019, 24, 962.                                                                                     | 1.7  | 18        |
| 8  | Drug Delivery: Nanoparticles of Metal-Organic Frameworks: On the Road to In Vivo Efficacy in<br>Biomedicine (Adv. Mater. 37/2018). Advanced Materials, 2018, 30, 1870281.                                            | 11.1 | 24        |
| 9  | Abiotic Sequenceâ€Coded Oligomers as Efficient Inâ€Vivo Taggants for the Identification of Implanted<br>Materials. Angewandte Chemie, 2018, 130, 10734-10738.                                                        | 1.6  | 12        |
| 10 | Design, characterization and in vivo performance of synthetic 2 mm-diameter vessel grafts made of<br>PVA-gelatin blends. Scientific Reports, 2018, 8, 7417.                                                          | 1.6  | 20        |
| 11 | GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness. Small, 2018, 14, e1801900.                                                                                                                   | 5.2  | 69        |
| 12 | Abiotic Sequence oded Oligomers as Efficient Inâ€Vivo Taggants for the Identification of Implanted<br>Materials. Angewandte Chemie - International Edition, 2018, 57, 10574-10578.                                   | 7.2  | 48        |
| 13 | Nanoparticles of Metalâ€Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine. Advanced<br>Materials, 2018, 30, e1707365.                                                                               | 11.1 | 459       |
| 14 | Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes<br>efficient cardiac repair in a rat myocardial infarction model. Journal of Controlled Release, 2017, 249,<br>23-31. | 4.8  | 37        |
| 15 | Cardiovascular Bio-Engineering: Current State of the Art. Journal of Cardiovascular Translational<br>Research, 2017, 10, 180-193.                                                                                    | 1.1  | 17        |
| 16 | A Smart Metal–Organic Framework Nanomaterial for Lung Targeting. Angewandte Chemie, 2017, 129,<br>15771-15775.                                                                                                       | 1.6  | 87        |
| 17 | A Smart Metal–Organic Framework Nanomaterial for Lung Targeting. Angewandte Chemie -<br>International Edition, 2017, 56, 15565-15569.                                                                                | 7.2  | 118       |
|    |                                                                                                                                                                                                                      |      |           |

4.38 The Situation of Metal-Organic Frameworks in Biomedicine â<sup>-</sup>†., 2017, , 719-749.

12

TERESA SIMON-YARZA

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cytokine-loaded PLGA and PEG-PLGA microparticles showed similar heart regeneration in a rat myocardial infarction model. International Journal of Pharmaceutics, 2017, 523, 531-533.                                                                                      | 2.6 | 36        |
| 20 | In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration.<br>International Journal of Pharmaceutics, 2016, 511, 1042-1047.                                                                                                               | 2.6 | 63        |
| 21 | PLGA Nano- and Microparticles for VEGF Delivery. , 2016, , 445-478.                                                                                                                                                                                                       |     | 0         |
| 22 | Polymeric Electrospun Scaffolds: Neuregulin Encapsulation and Biocompatibility Studies in a Model of Myocardial Ischemia. Tissue Engineering - Part A, 2015, 21, 1654-1661.                                                                                               | 1.6 | 23        |
| 23 | Tracking the in vivo release of bioactive NRG from PLGA and PEG–PLGA microparticles in infarcted hearts. Journal of Controlled Release, 2015, 220, 388-396.                                                                                                               | 4.8 | 37        |
| 24 | Vascular endothelial growth factorâ€loaded injectable hydrogel enhances plasticity in the injured spinal cord. Journal of Biomedical Materials Research - Part A, 2014, 102, 2345-2355.                                                                                   | 2.1 | 50        |
| 25 | Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable<br>microparticles promotes cardiac repair in a rat myocardial infarction model through activation of<br>endogenous regeneration. Journal of Controlled Release, 2014, 173, 132-139. | 4.8 | 98        |
| 26 | PEGylated-PLGA microparticles containing VEGF for long term drug delivery. International Journal of Pharmaceutics, 2013, 440, 13-18.                                                                                                                                      | 2.6 | 56        |
| 27 | Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. International Journal of Pharmaceutics, 2013, 455, 148-158.                                                                                      | 2.6 | 94        |
| 28 | Biodegradation and heart retention of polymeric microparticles in a rat model of myocardial ischemia. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 665-672.                                                                                          | 2.0 | 31        |
| 29 | Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia.<br>International Journal of Pharmaceutics, 2013, 454, 784-790.                                                                                                      | 2.6 | 55        |
| 30 | Adipose-derived stem cells combined with Neuregulin-1 delivery systems for heart tissue engineering.<br>European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 143-150.                                                                                        | 2.0 | 32        |
| 31 | Vascular Endothelial Growth Factor-Delivery Systems for Cardiac Repair: An Overview. Theranostics, 2012, 2, 541-552.                                                                                                                                                      | 4.6 | 92        |
| 32 | Angiogenic therapy for cardiac repair based on protein delivery systems. Heart Failure Reviews, 2012,<br>17, 449-473.                                                                                                                                                     | 1.7 | 49        |
| 33 | Drug Delivery in Tissue Engineering: General Concepts. RSC Drug Discovery Series, 2012, , 501-526.                                                                                                                                                                        | 0.2 | 1         |
| 34 | Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue<br>remodeling in an acute myocardial ischemia–reperfusion model. Journal of Controlled Release, 2010,<br>147, 30-37.                                                             | 4.8 | 184       |