
Pier Giorgio Cozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3677386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
2	Effect of the iodine atom position on the phosphorescence of BODIPY derivatives: a combined computational and experimental study. Photochemical and Photobiological Sciences, 2022, 21, 777-786.	1.6	7
3	Acceleration of oxidation promoted by laccase irradiation with red light. New Journal of Chemistry, 2022, 46, 8662-8668.	1.4	1
4	A Photoredox Nozakiâ€Hiyama Reaction Catalytic in Chromium. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
5	Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chemical Science, 2022, 13, 5973-5981.	3.7	26
6	Dual Photoredox and Nickel Catalysed Reductive Coupling of Alkynes and Aldehydes. Advanced Synthesis and Catalysis, 2022, 364, 3410-3419.	2.1	7
7	Tailored Coumarin Dyes for Photoredox Catalysis: Calculation, Synthesis, and Electronic Properties. ChemCatChem, 2021, 13, 981-989.	1.8	10
8	Catalytic Photoredox Allylation of Aldehydes Promoted by a Cobalt Complex. Advanced Synthesis and Catalysis, 2021, 363, 1105-1111.	2.1	27
9	Boron Compounds as Additives for the Cationic Polymerization Using Coumarin Derivatives in Epoxy Silicones. Macromolecular Chemistry and Physics, 2021, 222, 2000404.	1.1	24
10	Metallaphotoredox catalysis with organic dyes. Organic and Biomolecular Chemistry, 2021, 19, 3527-3550.	1.5	44
11	Photoredox Allylation Reactions Mediated by Bismuth in Aqueous Conditions. European Journal of Organic Chemistry, 2021, 2021, 1624-1627.	1.2	15
12	Photoredox Propargylation of Aldehydes Catalytic in Titanium. Journal of Organic Chemistry, 2021, 86, 7002-7009.	1.7	18
13	4-Fluoro-Threonine: From Diastereoselective Synthesis to pH-Dependent Conformational Equilibrium in Aqueous Solution. ACS Omega, 2021, 6, 13170-13181.	1.6	4
14	Design of BODIPY dyes as triplet photosensitizers: electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chemical Science, 2021, 12, 6607-6628.	3.7	155
15	Aluminum(III) Salen Complexes as Active Photoredox Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1486-1490.	1.2	24
16	Asymmetric Reactions Enabled by Cooperative Enantioselective Amino- and Lewis Acid Catalysis. Topics in Current Chemistry, 2020, 378, 1.	3.0	74
17	A supramolecular bifunctional iridium photoaminocatalyst for the enantioselective alkylation of aldehydes. Dalton Transactions, 2020, 49, 14497-14505.	1.6	4
18	Shining Light on Ti ^{IV} Complexes: Exceptional Tools for Metallaphotoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 6955-6965.	1.2	37

#	Article	IF	CITATIONS
19	A Journey from Thermally Tunable Synthesis to Spectroscopy of Phenylmethanimine in Gas Phase and Solution. Chemistry - A European Journal, 2020, 26, 15016-15022.	1.7	7
20	Keto oumarin scaffold for photoinitiators for 3D printing and photocomposites. Journal of Polymer Science, 2020, 58, 1115-1129.	2.0	49
21	Cp ₂ TiCl ₂ -Catalyzed Photoredox Allylation of Aldehydes with Visible Light. ACS Catalysis, 2020, 10, 3857-3863.	5.5	55
22	Stereoselective synergystic organo photoredox catalysis with enamines and iminiums. Physical Sciences Reviews, 2020, 5, .	0.8	4
23	Asymmetric Reactions Enabled by Cooperative Enantioselective Amino‑ and Lewis Acid Catalysis. Topics in Current Chemistry Collections, 2020, , 29-65.	0.2	0
24	Hybrid Silicon Nanocrystals for Color-Neutral and Transparent Luminescent Solar Concentrators. ACS Photonics, 2019, 6, 2303-2311.	3.2	63
25	Coumarin derivatives as versatile photoinitiators for 3D printing, polymerization in water and photocomposite synthesis. Polymer Chemistry, 2019, 10, 872-884.	1.9	100
26	Al(Salen) Metal Complexes in Stereoselective Catalysis. Molecules, 2019, 24, 1716.	1.7	33
27	Allylation of aldehydes by dual photoredox and nickel catalysis. Chemical Communications, 2019, 55, 6838-6841.	2.2	40
28	Mapping Conformational Changes in a Self-Assembled Two-Dimensional Molecular Network by Statistical Analysis of Conductance Images. Physical Review Applied, 2019, 11, .	1.5	1
29	Highly Performing Iodoperfluoroalkylation of Alkenes Triggered by the Photochemical Activity of Perylene Diimides. ChemPhotoChem, 2019, 3, 193-197.	1.5	37
30	Other Nitrogen Heterocycles: Carbazoles, Imides and PDI, mpg-C ₃ N ₄ , Tetrazines, Riboflavin, and BODIPY. Catalytic Science Series, 2019, , 423-469.	0.6	0
31	A facile hydroxylation of arylboronic acids mediated by sodium ascorbate. Organic Chemistry Frontiers, 2018, 5, 1573-1578.	2.3	27
32	Mechanistic insights into two-photon-driven photocatalysis in organic synthesis. Physical Chemistry Chemical Physics, 2018, 20, 8071-8076.	1.3	69
33	Phenoxyaluminum(salophen) Scaffolds: Synthesis, Electrochemical Properties, and Selfâ€Assembly at Surfaces of Multifunctional Systems. Chemistry - A European Journal, 2018, 24, 11954-11960.	1.7	12
34	Catalytic Stereoselective S _N 1â€Type Reactions Promoted by Chiral Phosphoric Acids as BrÃ,nsted Acid Catalysts. Asian Journal of Organic Chemistry, 2018, 7, 1957-1981.	1.3	42
35	Application of coumarin dyes for organic photoredox catalysis. Chemical Communications, 2018, 54, 10044-10047.	2.2	64
36	Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions. Angewandte Chemie - International Edition, 2018, 57, 13853-13857.	7.2	60

#	Article	IF	CITATIONS
37	Self-Assembled Two-Dimensional Supramolecular Networks Characterized by Scanning Tunneling Microscopy and Spectroscopy in Air and under Vacuum. Langmuir, 2018, 34, 7698-7707.	1.6	4
38	Ironâ€Promoted Radical Reactions: Current Status and Perspectives. Asian Journal of Organic Chemistry, 2017, 6, 1160-1179.	1.3	27
39	Stereoselective SN1-Type Reaction of Enols and Enolates. Synthesis, 2017, 49, 3433-3443.	1.2	22
40	Photocatalytic ATRA reaction promoted by iodo-Bodipy and sodium ascorbate. Chemical Communications, 2017, 53, 1591-1594.	2.2	79
41	Photoredox Catalysis: The Need to Elucidate the Photochemical Mechanism. Angewandte Chemie - International Edition, 2017, 56, 12820-12821.	7.2	66
42	Photoredox Catalysis: The Need to Elucidate the Photochemical Mechanism. Angewandte Chemie, 2017, 129, 12996-12997.	1.6	23
43	Photocatalytic Radical Alkylation of Electrophilic Olefins by Benzylic and Alkylic Zinc-Sulfinates. ACS Catalysis, 2017, 7, 5357-5362.	5.5	41
44	Photoredox radical conjugate addition of dithiane-2-carboxylate promoted by an iridium(<scp>iii</scp>) phenyl-tetrazole complex: a formal radical methylation of Michael acceptors. Chemical Science, 2017, 8, 1613-1620.	3.7	45
45	Stereoselective Reactions with Chiral Schiff Base Metal Complexes. Chimia, 2017, 71, 562.	0.3	11
46	Organocatalytic Stereoselective Addition of Aldehydes to Acylquinolinium Ions. European Journal of Organic Chemistry, 2016, 2016, 3200-3207.	1.2	23
47	From QCA (Quantum Cellular Automata) to Organocatalytic Reactions with Stabilized Carbenium Ions. Chemical Record, 2016, 16, 1228-1243.	2.9	11
48	Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study. Nanoscale, 2016, 8, 13678-13686.	2.8	19
49	A Versatile Organocatalytic Approach for the Synthesis of Enantioenriched <i>gem</i> â€Difluorinated Compounds. Chemistry - A European Journal, 2015, 21, 13689-13695.	1.7	9
50	Me ₂ Znâ€Mediated Catalytic Enantio―and Diastereoselective Addition of TosMIC to Ketones. Chemistry - A European Journal, 2015, 21, 18949-18952.	1.7	18
51	Organocatalytic enantioselective synthesis of 1-vinyl tetrahydroisoquinolines through allenamide activation with chiral BrĀ,nsted acids. RSC Advances, 2015, 5, 10546-10550.	1.7	19
52	Organocatalyzed Asymmetric Alkylation of Stable Aryl or Heteroaryl(3â€indolyl)methylium <i>o</i> â€Benzenedisulfonimides. Asian Journal of Organic Chemistry, 2015, 4, 337-345.	1.3	12
53	Stereoselective Organocatalytic Addition of Nucleophiles to Isoquinolinium and 3,4-dihydroisoquinolinium Ions: A Simple Approach for the Synthesis of Isoquinoline Alkaloids. Catalysis Letters, 2015, 145, 398-419.	1.4	23
54	Synthesis of Bench-Stable Diarylmethylium Tetrafluoroborates. Journal of Organic Chemistry, 2015, 80, 4791-4796.	1.7	21

#	Article	IF	CITATIONS
55	Organocatalytic Enantioselective Alkylation of Aldehydes with [Fe(bpy) ₃]Br ₂ Catalyst and Visible Light. ACS Catalysis, 2015, 5, 5927-5931.	5.5	148
56	Synergistic Stereoselective Organocatalysis with Indium(III) Salts. Synthesis, 2014, 46, 1321-1328.	1.2	12
57	A Catalytic Reactor for the Organocatalyzed Enantioselective Continuous Flow Alkylation of Aldehydes. ChemSusChem, 2014, 7, 3534-3540.	3.6	28
58	A Practical and Stereoselective Organocatalytic Alkylation of Aldehydes with Benzodithiolylium Tetrafluoroborate. Chirality, 2014, 26, 607-613.	1.3	7
59	Gold nanoparticles stabilized using a fluorescent propargylic ester terminal alkyne at room temperature. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	2
60	Synergy, Compatibility, and Innovation: Merging Lewis Acids with Stereoselective Enamine Catalysis. Chemistry - an Asian Journal, 2014, 9, 984-995.	1.7	61
61	New Approaches toward Ferrocene–Guanine Conjugates: Synthesis and Electrochemical Behavior. Organometallics, 2014, 33, 4986-4993.	1.1	16
62	A highly enantioselective acyl-Mannich reaction of isoquinolines with aldehydes promoted by proline derivatives: an approach to 13-alkyl-tetrahydroprotoberberine alkaloids. Chemical Science, 2014, 5, 3915.	3.7	70
63	A Straightforward Organocatalytic Alkylation of 2â€Arylacetaldehydes: An Approach towards Bisabolanes. Advanced Synthesis and Catalysis, 2014, 356, 528-536.	2.1	20
64	A Rational Approach Towards a New Ferrocenyl Pyrrolidine for Stereoselective Enamine Catalysis. Chemistry - A European Journal, 2013, 19, 7696-7700.	1.7	23
65	A Rotaxane Turing Machine for Peptides. ChemBioChem, 2013, 14, 1185-1187.	1.3	10
66	A Highly Stereoselective Organocatalytic Approach to Lilial® and Muguesia. Synlett, 2013, 24, 449-452.	1.0	19
67	Stereoselective Organocatalytic Alkylations with Carbenium Ions. Synlett, 2013, 24, 281-296.	1.0	15
68	The Facile and Direct Formylation of Organoboron Aromatic Compounds with Benzodithiolylium Tetrafluoroborate. European Journal of Organic Chemistry, 2013, 2013, 4909-4917.	1.2	13
69	Direct and Stereoselective Alkylation of Nitro Derivatives with Activated Alcohols in Trifluoroethanol. European Journal of Organic Chemistry, 2012, 2012, 6697-6701.	1.2	25
70	A general stereoselective enamine mediated alkylation of α-substituted aldehydes. Chemical Communications, 2012, 48, 3614.	2.2	49
71	Toward quantum-dot cellular automata units: thiolated-carbazole linked bisferrocenes. Nanoscale, 2012, 4, 813-823.	2.8	58
72	Single electron tunneling in large scale nanojunction arrays with bisferrocene–nanoparticle hybrids. Nanoscale, 2012, 4, 2311.	2.8	6

#	Article	IF	CITATIONS
73	Indium(III)â€Promoted Organocatalytic Enantioselective <i>α</i> â€Alkylation of Aldehydes with Benzylic and Benzhydrylic Alcohols. Asian Journal of Organic Chemistry, 2012, 1, 38-42.	1.3	26
74	Organocatalytic Stereoselective <i>α</i> â€Formylation of Ketones. ChemCatChem, 2012, 4, 968-971.	1.8	13
75	Flowing and Vibrant Organocatalysis. ChemCatChem, 2012, 4, 887-889.	1.8	2
76	Gold meets enamine catalysis in the enantioselective α-allylic alkylation of aldehydes with alcohols. Chemical Science, 2012, 3, 2859.	3.7	60
77	Enantio and Diastereoselective Addition of Phenylacetylene to Racemic α-chloroketones. Molecules, 2011, 16, 5298-5314.	1.7	6
78	Direct Nucleophilic S _N 1â€₹ype Reactions of Alcohols. European Journal of Organic Chemistry, 2011, 2011, 647-666.	1.2	290
79	Atroposelective Organocatalysis. Angewandte Chemie - International Edition, 2011, 50, 3847-3849.	7.2	38
80	Highly Enantioselective αâ€Alkylation of Aldehydes with 1,3â€Benzodithiolylium Tetrafluoroborate: A Formal Organocatalytic αâ€Alkylation of Aldehydes by the Carbenium Ion. Angewandte Chemie - International Edition, 2011, 50, 7842-7846.	7.2	85
81	Inside Cover: Highly Enantioselective αâ€Alkylation of Aldehydes with 1,3-Benzodithiolylium Tetrafluoroborate: A Formal Organocatalytic αâ€Alkylation of Aldehydes by the Carbenium Ion (Angew.) Tj ET	Qq ž. 2 0.7	84301.4 rgBT /(
82	S _N 1â€Type Reactions in the Presence of Water: Indium(III)â€Promoted Highly Enantioselective Organocatalytic Propargylation of Aldehydes. Chemistry - A European Journal, 2011, 17, 7404-7408.	1.7	73
83	Enantioselective α-Alkylation of Aldehydes Using 1,3-Benzodithiolylium Tetrafluoroborate. Synfacts, 2011, 2011, 1018-1018.	0.0	Ο
84	Organocatalytic Stereoselective αâ€Alkylation of Aldehydes with Stable Carbocations. Chemistry - an Asian Journal, 2010, 5, 2047-2052.	1.7	100
85	Merging Organocatalysis with an Indium(III)â€Mediated Process: A Stereoselective αâ€Alkylation of Aldehydes with Allylic Alcohols. Chemistry - A European Journal, 2010, 16, 11237-11241.	1.7	89
86	Stereoselective Reactions with Stabilized Carbocations. Angewandte Chemie - International Edition, 2010, 49, 256-259.	7.2	52
87	Copper-promoted enantioselective Reformatsky-type reaction with ketones. Tetrahedron: Asymmetry, 2010, 21, 1503-1506.	1.8	17
88	The First Catalytic Enantioselective Aldolâ€īype Reaction of Ethyl Diazoacetate to Ketones. Advanced Synthesis and Catalysis, 2009, 351, 1763-1767.	2.1	25
89	Electrophilic Activation of Aldehydes "On Waterâ€ŧ A Facile Route to Dipyrromethanes. ChemSusChem, 2009, 2, 218-220.	3.6	14
90	Organocatalytic Asymmetric Alkylation of Aldehydes by S _N 1â€Type Reaction of Alcohols. Angewandte Chemie - International Edition, 2009, 48, 1313-1316.	7.2	249

#	Article	IF	CITATIONS
91	Catalytic stereoselective benzylic C–H functionalizations by oxidative C–H activation and organocatalysis. Chemical Communications, 2009, , 5919.	2.2	159
92	Me2Zn as a radical source in Reformatsky-type reactions. Chemical Communications, 2009, , 469-470.	2.2	21
93	Synthesis of camphorsulfonamide-based quinoline ligands and their N-oxides: first use in the enantioselective addition of organozinc reagents to aldehydes. Tetrahedron: Asymmetry, 2008, 19, 2600-2607.	1.8	26
94	A Rational Approach towards the Nucleophilic Substitutions of Alcohols "on Water― Angewandte Chemie - International Edition, 2008, 47, 4162-4166.	7.2	137
95	Dimethylzincâ€Mediated, Oxidatively Promoted Reformatsky Reaction of Ethyl Iodoacetate with Aldehydes and Ketones. Advanced Synthesis and Catalysis, 2008, 350, 975-978.	2.1	37
96	The Erratic Emission of Pyrene on Gold Nanoparticles. ACS Nano, 2008, 2, 77-84.	7.3	60
97	Me2Zn mediated, tert-butylhydroperoxide promoted, catalytic enantioselective Reformatsky reaction with aldehydes. Chemical Communications, 2008, , 3317.	2.2	39
98	Catalytic enantioselective Reformatsky reactions. Pure and Applied Chemistry, 2008, 80, 891-901.	0.9	28
99	Iridium Catalyzed Enantioselective Hydrogenation of N-Iminopyridinium Ylides: Mechanistic Insights. Heterocycles, 2008, 76, 1271.	0.4	38
100	Practical Chloromanganese-Salen-Catalyzed Enantioselective Reformatsky Reaction with Ketones. Synthesis, 2007, 2007, 2746-2750.	1.2	19
101	Convenient Preparation of Chiral Dipyrrolylmethanes Containing a Chiral Moiety. Collection of Czechoslovak Chemical Communications, 2007, 72, 1046-1056.	1.0	2
102	The application of bis(oxazoline) ligands in the catalytic enantioselective methallylation of aldehydes. Organic and Biomolecular Chemistry, 2007, 5, 763.	1.5	43
103	Nucleophilic substitution of ferrocenyl alcohols "on water― Green Chemistry, 2007, 9, 1292.	4.6	77
104	Reformatsky Reactions Meet Catalysis and Stereoselectivity. Angewandte Chemie - International Edition, 2007, 46, 2568-2571.	7.2	64
105	Stereoselektive und katalytische Reformatsky-Reaktionen. Angewandte Chemie, 2007, 119, 2620-2623.	1.6	22
106	Facile Access to Optically Active Ferrocenyl Derivatives with Direct Substitution of the Hydroxy Group Catalyzed by Indium Tribromide. European Journal of Organic Chemistry, 2007, 2007, 2248-2253.	1.2	84
107	Enantioselective Catalytic Formation of Quaternary Stereogenic Centers. European Journal of Organic Chemistry, 2007, 2007, 5969-5994.	1.2	523
108	Titanium-catalyzed Reformatsky-type reaction. Journal of Organometallic Chemistry, 2007, 692, 3191-3197.	0.8	17

#	Article	IF	CITATIONS
109	Dimethylzinc-Mediated Alkynylation of Imines. Journal of Organic Chemistry, 2006, 71, 1558-1562.	1.7	82
110	Highly Enantioselective Addition of Me2Zn to Aldehydes Catalyzed by ClCr(Salen). Journal of the American Chemical Society, 2006, 128, 4940-4941.	6.6	69
111	First enantioselective one-pot, three-component imino Reformatsky reaction. Pure and Applied Chemistry, 2006, 78, 287-291.	0.9	17
112	A Catalytic, Me2Zn-Mediated, Enantioselective Reformatsky Reaction With Ketones. Angewandte Chemie - International Edition, 2006, 45, 2951-2954.	7.2	75
113	ChiralC2-Boron-Bis(oxazolines) in Asymmetric Catalysis – A Theoretical Study of the Catalyzed Enantioselective Reduction of Ketones Promoted by Catecholborane. European Journal of Organic Chemistry, 2006, 2006, 4596-4608.	1.2	18
114	Application of Tridentate Bis(oxazoline) Ligands in Catalytic Asymmetric Nozaki–Hiyama Allylation and Crotylation: An Example of High Enantioselection with a Non-Symmetric Bis(oxazoline) Ligand. Advanced Synthesis and Catalysis, 2006, 348, 551-558.	2.1	91
115	A Catalytic Enantioselective Imino-Reformatsky Reaction. Advanced Synthesis and Catalysis, 2006, 348, 2075-2079.	2.1	47
116	Dipeptide-Catalyzed Asymmetric Aldol Condensation of Acetone with (N-Alkylated) Isatins. Journal of Organic Chemistry, 2005, 70, 7418-7421.	1.7	219
117	Highly Enantioselective One-Pot, Three-Component Imino-Reformatsky Reaction. Angewandte Chemie - International Edition, 2005, 44, 3600-3603.	7.2	74
118	Metal?Salen Schiff Base Complexes in Catalysis: Practical Aspects. ChemInform, 2005, 36, no.	0.1	0
119	BINOL Catalyzed Enantioselective Addition of Titanium Phenylacetylide to Aromatic Ketones ChemInform, 2005, 36, no.	0.1	Ο
120	Highly Enantioselective One-Pot, Three-Component Imino-Reformatsky Reaction ChemInform, 2005, 36, no.	0.1	0
121	ZnMe2-Mediated Addition of Acetylenes to Aldehydes and Ketones ChemInform, 2005, 36, no.	0.1	Ο
122	Me2Zn-Mediated Addition of Acetylenes to Aldehydes and Ketones. Journal of Organic Chemistry, 2005, 70, 5733-5736.	1.7	54
123	Catalytic Enantioselective Addition of Me2Zn to Aromatic Aldehydes Promoted by New Modular Thiophene-Oxazoline Ligands. Letters in Organic Chemistry, 2004, 1, 208-211.	0.2	8
124	A Cross Metathesis Based Protocol for the Effective Synthesis of FunctionÂalised Allyl Bromides and Chlorides. Synthesis, 2004, 2004, 409-414.	1.2	4
125	The Application of HETPHOX Ligands to the Asymmetric Intermolecular Heck Reaction of 2,3-Dihydrofuran and 2,2-Disubstituted-2,3-Dihydrofurans. Synthesis, 2004, 2004, 1879-1888.	1.2	2
126	The Application of HETPHOX Ligands to the Asymmetric Intermolecular Heck Reaction. Synlett, 2004, 2004, 106-110.	1.0	2

#	Article	IF	CITATIONS
127	Kinetic Resolution of Epoxides by a CC Bond-Forming Reaction: Highly Enantioselective Addition of Indoles tocis,trans, andmeso Aromatic Epoxides Catalyzed by[Cr(salen)] Complexes. Angewandte Chemie - International Edition, 2004, 43, 84-87.	7.2	120
128	Acetylenes in Catalysis: Enantioselective Additions to Carbonyl Groups and Imines and Applications Beyond. European Journal of Organic Chemistry, 2004, 2004, 4095-4105.	1.2	279
129	Effective Modular Iminooxazoline (IMOX) Ligands for Asymmetric Catalysis: [Zn(IMOX)]-Promoted Enantioselective Reduction of Ketones by Catecholborane ChemInform, 2004, 35, no.	0.1	0
130	A New Class of C1-Symmetric Monosulfoximine Ligands for Enantioselective Hetero Diels—Alder Reactions ChemInform, 2004, 35, no.	0.1	0
131	Kinetic Resolution of Epoxides by a C—C Bond-Forming Reaction: Highly Enantioselective Addition of Indoles to cis, trans, and meso Aromatic Epoxides Catalyzed by [Cr(salen)] Complexes ChemInform, 2004, 35, no.	0.1	0
132	HetPHOX: A New Class of Easily Prepared Modular Chiral Ligands ChemInform, 2004, 35, no.	0.1	0
133	HetPHOX: a new class of easily prepared modular chiral ligands. Tetrahedron: Asymmetry, 2004, 15, 2235-2239.	1.8	14
134	BINOL catalyzed enantioselective addition of titanium phenylacetylide to aromatic ketones. Chemical Communications, 2004, , 2448.	2.2	66
135	Enantioselective Hydrogenation of Imines in Ionic Liquid/Carbon Dioxide Media. Journal of the American Chemical Society, 2004, 126, 16142-16147.	6.6	232
136	Metal–Salen Schiff base complexes in catalysis: practical aspects. Chemical Society Reviews, 2004, 33, 410-421.	18.7	1,690
137	Photophysical poperties of Schiff-base metal complexes. New Journal of Chemistry, 2003, 27, 692-697.	1.4	126
138	Bis(oxazoline)titanium Complexes as Chiral Catalysts for Enantioselective Hydrosilylation of Ketones â^' A Combined Experimental and Theoretical Investigation. European Journal of Organic Chemistry, 2003, 2003, 2972-2984.	1.2	34
139	Enantioselective Alkynylation of Ketones Catalyzed by Zn(Salen) Complexes. Angewandte Chemie, 2003, 115, 3001-3004.	1.6	59
140	InBr3-Catalyzed Friedel—Crafts Addition of Indoles to Chiral Aromatic Epoxides: A Facile Route to Enantiopure Indolyl Derivatives ChemInform, 2003, 34, no.	0.1	0
141	Iridium-HetPHOX Complexes for the Catalytic Asymmetric Hydrogenation of Olefins and Imines ChemInform, 2003, 34, no.	0.1	0
142	Enantioselective Alkynylation of Ketones Catalyzed by Zn(Salen) Complexes ChemInform, 2003, 34, no.	0.1	0
143	Enantioselective Alkynylation of Ketones Catalyzed by Zn(Salen) Complexes. Angewandte Chemie - International Edition, 2003, 42, 2895-2898.	7.2	209
144	Effective Modular Iminooxazoline (IMOX) Ligands for Asymmetric Catalysis:[Zn(IMOX)]-Promoted Enantioselective Reduction of Ketones by Catecholborane. Angewandte Chemie - International Edition, 2003, 42, 4928-4930.	7.2	68

#	Article	IF	CITATIONS
145	Di- and Trivalent Dinuclear Samarium Complexes Supported by Pyrrole-Based Tetradentate Schiff Bases. Organometallics, 2003, 22, 434-439.	1.1	42
146	A new class of C1-symmetric monosulfoximine ligands for enantioselective hetero Diels–Alder reactions. Chemical Communications, 2003, , 2826-2827.	2.2	56
147	Iridium-HetPHOX Complexes forthe Catalytic Asymmetric Hydrogenation of Olefins and Imines. Synlett, 2003, 2003, 0833-0836.	1.0	66
148	[Cr(Salen)] as a †̃bridge' between asymmetric catalysis, Lewis acids and redox processes. Chemical Communications, 2002, , 919-927.	2.2	107
149	Sequential One-Pot InBr3-Catalyzed 1,4- then 1,2-Nucleophilic Addition to Enones. Journal of Organic Chemistry, 2002, 67, 3700-3704.	1.7	259
150	InBr3-Catalyzed Friedelâ^'Crafts Addition of Indoles to Chiral Aromatic Epoxides:Â A Facile Route to Enantiopure Indolyl Derivatives. Journal of Organic Chemistry, 2002, 67, 5386-5389.	1.7	90
151	Design of boron bis-oxazolinate (B-BOXate) complexes: a new class of stable organometallic catalysts. Chemical Communications, 2001, , 1318-1319.	2.2	15
152	Cr(Salen)-Catalyzed Addition of 1,3-Dichloropropene to Aromatic Aldehydes. A Simple Access to Optically Active Vinyl Epoxides. Organic Letters, 2001, 3, 1153-1155.	2.4	48
153	Asymmetric synthesis with "privileged" ligands. Pure and Applied Chemistry, 2001, 73, 325-329.	0.9	19
154	Enantioselective catalytic addition of allyl organometallic reagents to aldehydes promoted by [Cr(Salen)]: the hidden role played by weak Lewis acids in metallo-Salen promoted reactions. Tetrahedron, 2001, 57, 835-843.	1.0	50
155	Indium tribromide: a highly effective catalyst for the addition of trimethylsilyl cyanide to α-hetero-substituted ketones. Tetrahedron Letters, 2001, 42, 3041-3043.	0.7	64
156	Chemo- and enantioselective catalytic addition of propargyl chloride to aldehydes promoted by [Cr(Salen)] complexes. Tetrahedron: Asymmetry, 2001, 12, 1063-1069.	1.8	58
157	Chiral Phosphinopyrrolyl-Oxazolines: A New Class of Easily Prepared, Modular P,N-Ligands. Advanced Synthesis and Catalysis, 2001, 343, 450-454.	2.1	105
158	Indium Tribromide: A Highly Effective Catalyst for the Addition of Trimethylsilyl Cyanide to αâ€Hetero‣ubstituted Ketones ChemInform, 2001, 32, 63-63.	0.1	0
159	Salen as a Chiral Activator:anti versussyn Switchable Diastereoselection in the Enantioselective Addition of Crotyl Bromide to Aromatic Aldehydes. Angewandte Chemie - International Edition, 2000, 39, 2327-2330.	7.2	79
160	Zinc triflate–bis-oxazoline complexes as chiral catalysts: enantioselective reduction of α-alkoxy-ketones with catecholborane. Tetrahedron Letters, 2000, 41, 1601-1605.	0.7	45
161	The first catalytic enantioselective Nozaki–Hiyama–Kishi reaction. Polyhedron, 2000, 19, 537-539.	1.0	67
162	Highly diastereoselective pinacol coupling of aldehydes catalyzed by titanium-Schiff base complexes. Tetrahedron Letters, 1999, 40, 1997-2000.	0.7	62

#	Article	IF	CITATIONS
163	Diastereoselective addition of higher order cuprates and zinc-copper reagents to imines derived from (S)-1-phenylethylamine. Tetrahedron, 1999, 55, 8103-8110.	1.0	20
164	The First Catalytic Enantioselective Nozaki-Hiyama Reaction. Angewandte Chemie - International Edition, 1999, 38, 3357-3359.	7.2	137
165	A Single Langmuirâ `Blodgett Monolayer for Gas Separations. Journal of the American Chemical Society, 1999, 121, 1621-1622.	6.6	28
166	Enantioselective reduction of ketones with triethoxysilane catalyzed by chiral bis-oxazoline titanium complexes. Chemical Communications, 1999, , 39-40.	2.2	46
167	The First Catalytic Enantioselective Nozaki–Hiyama Reaction. , 1999, 38, 3357.		5
168	Enantio and Diastereoselective Addition of Organometallic Reagents to Aldehydes and Imines. , 1999, , 239-246.		0
169	Chiral–achiral ligand synergy: activation of a zirconium–BINOL Lewis acid complex by the addition of 4-tert-butylcalix[4]arene. Chemical Communications, 1997, , 2123-2124.	2.2	50
170	Catalytic asymmetric synthesis of secondary alcohols using chiral cis-1-amino-2-hydroxy-1,2,3,4-tetrahydronaphthalene as chiral ligand. Tetrahedron: Asymmetry, 1997, 8, 895-902.	1.8	31
171	Enantioselective allylation of aldehydes promoted by chiral zinc bis(oxazoline) complexes. Tetrahedron Letters, 1997, 38, 145-148.	0.7	48
172	Interaction Modes of Titanium Tetrachloride with the Carbonyl Functionality. Chemische Berichte, 1996, 129, 1361-1368.	0.2	31
173	Highly diastereoselective addition of silyl enolates to chiral imines derived from (S)-valine methyl ester using lanthanide triflate. Tetrahedron Letters, 1996, 37, 1691-1694.	0.7	49
174	Enantioselective addition of Et2Zn to aldehydes promoted by a chiral Schiff base metal complex. Tetrahedron Letters, 1996, 37, 4613-4616.	0.7	52
175	Catalytic allylation of imines promoted by lanthanide triflates. Tetrahedron Letters, 1995, 36, 7289-7292.	0.7	67
176	(Hydroxyphenyl)oxazoline: a Novel and Remarkably Facile Entry into the Area of Chiral Cationic Alkylzirconium Complexes Which Serve as Polymerization Catalysts. Organometallics, 1995, 14, 4994-4996.	1.1	68
177	alphaSulfonyl Carbanion-Transition-Metal Bonds. Alkali-Metal .alphaSulfonyl Carbanions and Their. Reactivity with Metal Complexes. Organometallics, 1995, 14, 1756-1760.	1.1	5
178	Zirconium-Assisted Aldol Condensation Reactions of Amido Enolates: Structural and Kinetic Analysis of the Reaction of N,N-Diphenylacetamide and N,N-Diphenylpropionamide Enolates with Benzaldehyde and p-Substituted Acetophenones. Organometallics, 1995, 14, 4092-4100.	1.1	20
179	Oxazoline Early Transition Metal Complexes: Functionalizable Achiral Titanium(IV), Titanium(III), Zirconium(IV), Vanadium(III), and Chiral Zirconium(IV) Bis(oxazoline) Complexes. Inorganic Chemistry, 1995, 34, 2921-2930.	1.9	68
180	Bis(hydroxyphenyloxazolinato)-titanium(IV) and -zirconium(IV) triflates as novel transition metal-based Lewis acids. Journal of the Chemical Society Perkin Transactions 1, 1995, , 2557.	0.9	12

#	Article	IF	CITATIONS
181	Titanium and zirconium ferrocene-substituted enolates and their reaction products with benzaldehyde and acetophenone: structural and kinetic studies of the aldol condensation pathway. Organometallics, 1995, 14, 4101-4108.	1.1	27
182	A Novel Homogeneous Lewis Acid Catalyst: Bistriflatedibenzotetramethyltetraazaannulenezirconium(IV) in a Cationic Form. Synlett, 1994, 1994, 857-858.	1.0	17
183	Mechanism of the Mukaiyama Aldol Reaction: The First Solid-State Characterization of a Trichlorotitanium Aldolate. Organometallics, 1994, 13, 2131-2134.	1.1	16
184	.betaKeto Amino Enolates Binding to Transition Metals: Synthesis and Structure of the Ion-Pair Form and Its Mono- and Bidentate Coordination to Zirconium and Nickel. Organometallics, 1994, 13, 1528-1532.	1.1	10
185	Cyclodivanadazene Alkyl and Aryl Complexes. Organometallics, 1994, 13, 2572-2574.	1.1	33
186	(.eta.6-Acetophenone)Cr(CO)3 Enolates Complexed to Bis(cyclopentadienyl)titanium(IV) and -zirconium(IV). Organometallics, 1994, 13, 4939-4945.	1.1	8
187	Nonorganometallic pathway of the Passerini reaction assisted by titanium tetrachloride. Organometallics, 1993, 12, 2726-2736.	1.1	55
188	Titanium ester homoenolates: a structural and synthetic study. Organometallics, 1993, 12, 2845-2848.	1.1	20
189	Stereoselective synthesis of .betalactams by condensation of titanium enolates of 2-pyridyl thioesters with imines. Journal of Organic Chemistry, 1992, 57, 4155-4162.	1.7	50
190	Diastereoselective cyclocondensation of electron-rich dienes with chiral thio-substituted aldehydes. Journal of Organic Chemistry, 1992, 57, 3605-3609.	1.7	10
191	Stereocontrol in the Mukaiyama aldol addition to chiral .alpha and .betathio-substituted aldehydes. Journal of Organic Chemistry, 1992, 57, 456-461.	1.7	51
192	Highly diastereoselective synthesis of β-lactams by addition of titanium enolates of 2-pyridyl thioesters to chiral imines. Tetrahedron Letters, 1992, 33, 1113-1116.	0.7	15
193	Mild and convenient one-pot synthesis of β-lactams by condensation of titanium enolates of 2-pyridylthioesters with imines Tetrahedron, 1991, 47, 8767-8774.	1.0	34
194	Diastereoselective aldol condensation of directly generated titanium enolates of activated esters Tetrahedron, 1991, 47, 7897-7910.	1.0	30
195	Diastereoselective addition of a silylketene acetal to chiral α-thioaldehydes Tetrahedron Letters, 1990, 31, 6733-6736.	0.7	19
196	Total synthesis of (±) pseudophrynamine A. Tetrahedron Letters, 1990, 31, 5661-5664.	0.7	17
197	Chelation controlled aldol additions of the enolsilane derived from tert-butyl thioacetate : a stereosetective approach to $1^{\hat{l}2}$ -methylthienamycin. Tetrahedron, 1988, 44, 5965-5974.	1.0	41
198	Chelation-controlled enantioselective synthesis of key intermediates for the preparation of carbapenem antibiotics PS-5 and 1.betamethyl-PS-5. Journal of Organic Chemistry, 1988, 53, 4015-4021.	1.7	45

#	Article	IF	CITATIONS
199	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie, 0, , .	1.6	8