Yasuyuki Miyamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3677213/publications.pdf

Version: 2024-02-01

471371 206029 2,732 168 17 48 citations h-index g-index papers 171 171 171 1625 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics, 1986, 22, 1915-1921.	1.0	1,054
2	Theoretical Gain of Quantum-Well Wire Lasers. Japanese Journal of Applied Physics, 1985, 24, L95-L97.	0.8	187
3	Few-layer HfS2 transistors. Scientific Reports, 2016, 6, 22277.	1.6	131
4	Threshold current density of GalnAsP/InP quantum-box lasers. IEEE Journal of Quantum Electronics, 1989, 25, 2001-2006.	1.0	102
5	Light Emission from Quantum-Box Structure by Current Injection. Japanese Journal of Applied Physics, 1987, 26, L225-L227.	0.8	97
6	InAs Thin-Channel High-Electron-Mobility Transistors with Very High Current-Gain Cutoff Frequency for Emerging Submillimeter-Wave Applications. Applied Physics Express, 2013, 6, 034001.	1.1	94
7	Collapse-free high power InAlGaN/GaN-HEMT with 3 W/mm at 96 GHz., 2015,,.		51
8	A self-consistent method for complete small-signal parameter extraction of InP-based heterojunction bipolar transistors (HBT's). IEEE Transactions on Microwave Theory and Techniques, 1997, 45, 39-45.	2.9	39
9	Investigation of Impact Ionization in InAs-Channel HEMT for High-Speed and Low-Power Applications. IEEE Electron Device Letters, 2007, 28, 856-858.	2.2	39
10	Conditions for OMVPE Growth of GalnAsP/InP Crystal. Japanese Journal of Applied Physics, 1984, 23, 1182-1189.	0.8	35
11	InP/InGaAs Composite Metal–Oxide–Semiconductor Field-Effect Transistors with Regrown Source and Al ₂ O ₃ Gate Dielectric Exhibiting Maximum Drain Current Exceeding 1.3 mA/µm. Applied Physics Express, 2011, 4, 054201.	1.1	35
12	Room-temperature operation of GalnAs/GalnAsP/InP SCH lasers with quantum-wire size active region. IEEE Journal of Quantum Electronics, 1993, 29, 2123-2133.	1.0	30
13	High drain current (& #x003E;2A/mm) InGaAs channel MOSFET at V <inf>D</inf> =0.5V with shrinkage of channel length by InP anisotropic etching. , 2011, , .		30
14	Wet Chemical Etching for Ultrafine Periodic Structure: Rectangular InP Corrugations of 70 nm Pitch and 100 nm Depth. Japanese Journal of Applied Physics, 1989, 28, 2193-2196.	0.8	27
15	Reduction of base-collector capacitance by undercutting the collector and subcollector in GalnAs/InP DHBTs. IEEE Electron Device Letters, 1996, 17, 97-99.	2.2	27
16	RF and Logic Performance Improvement of \$ hbox{In}_{0.7}hbox{Ga}_{0.3}hbox{As}\$ Composite-Channel HEMT Using Gate-Sinking Technology. IEEE Electron Device Letters, 2008, 29, 290-293.	2.2	26
17	InP Hot Electron Transistors with a Buried Metal Gate. Japanese Journal of Applied Physics, 2003, 42, 7221-7226.	0.8	21
18	30-GHz Low-Noise Performance of 100-nm-Gate-Recessed n-GaN/AlGaN/GaN HEMTs. IEEE Electron Device Letters, 2010, 31, 105-107.	2.2	21

#	Article	IF	CITATIONS
19	Ultrafine Fabrication Technique for Hot Electron Interference/Diffraction Devices. Japanese Journal of Applied Physics, 1994, 33, 925-928.	0.8	18
20	GalnAsP/InP single-quantum-well (SQW) laser with wire-like active region towards quantum wire laser. Electronics Letters, 1988, 24, 824.	0.5	18
21	A 40-nm-pitch double-slit experiment of hot electrons in a semiconductor under a magnetic field. Applied Physics Letters, 1997, 70, 93-95.	1.5	17
22	Submicron InP/InGaAs Composite-Channel Metal–Oxide–Semiconductor Field-Effect Transistor with Selectively Regrown n ⁺ -Source. Applied Physics Express, 2010, 3, 094201.	1.1	17
23	Performance Improvement of HfS2 Transistors by Atomic Layer Deposition of HfO2. IEEE Nanotechnology Magazine, 2017, 16, 582-587.	1.1	16
24	Fabrication technique for GalnAsP/InP quantum wire structure by LP-MOVPE. Journal of Crystal Growth, 1988, 93, 365-369.	0.7	15
25	Barrier thickness dependence of peak current density in GalnAs/AlAs/InP resonant tunneling diodes by MOVPE. Solid-State Electronics, 1999, 43, 1395-1398.	0.8	15
26	Detection of hot electron current with scanning hot electron microscopy. Applied Physics Letters, 1996, 69, 2196-2198.	1.5	14
27	Fabrication of Vertical InGaAs Channel Metalâ€"Insulatorâ€"Semiconductor Field Effect Transistor with a 15-nm-Wide Mesa Structure and a Drain Current Density of 7 MA/cm2. Applied Physics Express, 2010, 3, 084101.	1.1	14
28	Improvement of Regrown Interface in InP Organo-Metallic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1991, 30, L672-L674.	0.8	13
29	Room temperature operation of GalnAs-GalnAsP-InP SCH multiquantum-film laser with narrow wire-like active region. IEEE Photonics Technology Letters, 1991, 3, 191-192.	1.3	12
30	Atomically flat OMVPE growth of GaInAs and InP observed by AFM for level narrowing in resonant tunneling diodes. Journal of Crystal Growth, 1997, 179, 18-25.	0.7	12
31	InAs High Electron Mobility Transistors with Buried Gate for Ultralow-Power-Consumption Low-Noise Amplifier Application. Japanese Journal of Applied Physics, 2008, 47, 7119-7121.	0.8	12
32	Alloy composition and flow rates in GaxIn1â^'xAsyP1â^'y lattice-matched to InP grown by MO-CVD. Electronics Letters, 1983, 19, 1036.	0.5	12
33	Fabrication of Si photonic waveguides by electron beam lithography using improved proximity effect correction. Japanese Journal of Applied Physics, 2020, 59, 126502.	0.8	12
34	Fabrication and transport properties of 50-nm-wide Au/Cr/GalnAs electrode for electron wave interference device. Applied Surface Science, 2000, 159-160, 179-185.	3.1	11
35	Permeability-controlled optical modulator with Tri-gate metamaterial: control of permeability on InP-based photonic integration platform. Scientific Reports, 2015, 5, 8985.	1.6	11
36	Buried rectangular GalnAs/InP corrugations of 70 nm pitch fabricated by OMVPE. Electronics Letters, 1990, 26, 875.	0.5	10

3

#	Article	IF	CITATIONS
37	High current gain GalnAs/InP hot electron transistor. Electronics Letters, 1990, 26, 1055.	0.5	10
38	Estimation of Phase Coherent Length of Hot Electrons in GalnAs Using Resonant Tunneling Diodes. Japanese Journal of Applied Physics, 1994, 33, 6491-6495.	0.8	10
39	Investigations of GMR characteristics and crystal structures for Ni/sub 81/Fe/sub 19//Cu multilayers with Ar ion bombardment on interfaces. IEEE Transactions on Magnetics, 1996, 32, 4719-4721.	1.2	10
40	Characterization of GalnAs/InP Triple-Barrier Resonant Tunneling Diodes Grown by Organo-Metallic Vapor Phase Epitaxy for High-Temperature Estimation of Phase Coherent Length of Electrons. Japanese Journal of Applied Physics, 1997, 36, 1846-1848.	0.8	10
41	Effect of Spacer Layer Thickness on Energy Level Width Narrowing in GalnAs/InP Resonant Tunneling Diodes Grown by Organo-Metallic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 1998, 37, 445-449.	0.8	10
42	71 mV/dec of sub-threshold slope in vertical tunnel field-effect transistors with GaAsSb/InGaAs heterostructure. , 2012, , .		10
43	Improvement in Gate Insulation in InP Hot Electron Transistors for High Transconductance and High Voltage Gain. Applied Physics Express, 0, 2, 034501.	1.1	10
44	OMVPE conditions for GalnAs/InP heterointerfaces and superlattices. Journal of Crystal Growth, 1988, 93, 353-358.	0.7	9
45	High P/V ratio of GalnAs/InP resonant tunneling diode grown by OMVPE. Journal of Crystal Growth, 1992, 124, 807-811.	0.7	9
46	Young's Double-Slit Interference Observation of Hot Electrons in Semiconductors. Physical Review Letters, 2003, 91, 216803.	2.9	9
47	Cutoff frequency characteristics of gate-controlled hot-electron transistors by Monte Carlo simulation. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 70-73.	0.8	9
48	Potential of Enhancement Mode In _{0.65} Ga _{0.35} As/InAs/In _{0.65} Ga _{0.35} As HEMTs for Using in High-Speed and Low-Power Logic Applications. ECS Journal of Solid State Science and Technology, 2015, 4, N157-N159.	0.9	9
49	Effect of increasing gate capacitance on the performance of a p-MoS ₂ /HfS ₂ van der Waals heterostructure tunneling field-effect transistor. Japanese Journal of Applied Physics, 2019, 58, SBBH02.	0.8	9
50	Performance improvement of a p-MoS ₂ /HfS ₂ van der Waals heterostructure tunneling FET by UV-O ₃ treatment. Applied Physics Express, 2019, 12, 065005.	1.1	9
51	Influence of Impurities on the Performance of Doped-Well GalnAs/InP Resonant Tunneling Diodes. Japanese Journal of Applied Physics, 1993, 32, L243-L246.	0.8	8
52	Impact of Latent Image Quality on Line Edge Roughness in Electron Beam Lithography. Japanese Journal of Applied Physics, 2004, 43, 3739-3743.	0.8	8
53	Vacuum Annealing and Passivation of HfS ₂ FET for Mitigation of Atmospheric Degradation. IEICE Transactions on Electronics, 2017, E100.C, 453-457.	0.3	8
54	GalnAsP/InP Single Quantum-Well Lasers by OMVPE. Japanese Journal of Applied Physics, 1987, 26, L176-L178.	0.8	7

#	Article	IF	CITATIONS
55	Nanostructure Alignment for Hot Electron Interference/Diffraction Devices. Japanese Journal of Applied Physics, 1995, 34, 4436-4438.	0.8	7
56	InP/InGaAs Hot Electron Transistors with Insulated Gate. Japanese Journal of Applied Physics, 2007, 46, L617-L619.	0.8	7
57	Increase in Collector Current in Hot-Electron Transistors Controlled by Gate Bias. Japanese Journal of Applied Physics, 2007, 46, L202-L204.	0.8	7
58	Sub-50-nm InGaAs MOSFET with n-InP source on Si substrate., 2013,,.		7
59	High electron mobility triangular InGaAs-OI nMOSFETs with (111)B side surfaces formed by MOVPE growth on narrow fin structures. , 2013, , .		7
60	Body width dependence of subthreshold slope and on-current in GaAsSb/InGaAs double-gate vertical tunnel FETs. Japanese Journal of Applied Physics, 2015, 54, 04DF10.	0.8	7
61	Annealing temperature dependence of alloy contact for N-polar GaN HEMT structure. Japanese Journal of Applied Physics, 2019, 58, SCCD14.	0.8	7
62	Threshold current reduction of GalnAs/GalnAsP/InP SCH quantum-well lasers with wire-like active region by using p-type substrates. IEEE Photonics Technology Letters, 1992, 4, 964-966.	1.3	6
63	Influence of a finite energy width on the hot electron double-slit interference experiment: A design of the emitter structure. Journal of Applied Physics, 1997, 82, 3846-3852.	1.1	6
64	InGaAs tri-gate MOSFETs with MOVPE regrown source/drain. , 2014, , .		6
65	A Method for Determining Trap Distributions of Specific Channel Surfaces in InGaAs Tri-Gate MOSFETs. IEEE Journal of the Electron Devices Society, 2018, 6, 408-412.	1.2	6
66	Type-II HfS ₂ /MoS ₂ Heterojunction Transistors. IEICE Transactions on Electronics, 2018, E101.C, 338-342.	0.3	6
67	Current Gain and Voltage Gain in Hot Electron Transistors without Base Layer. IEICE Transactions on Electronics, 2006, E89-C, 972-978.	0.3	6
68	Very fine corrugations formed on InP by wet chemical etching and electron beam lithography. Electronics Letters, 1989, 25, 238.	0.5	5
69	Negative differential conductance due to resonant states in GalnAs/InP hotâ€electron transistors. Applied Physics Letters, 1990, 57, 2104-2106.	1.5	5
70	25 nm pitch GalnAs/InP buried structure: Improvement by calixarene as an electron beam resist and tertiarybutylphosphine as a P source in organometallic vapor phase epitaxy regrowth. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 3894.	1.6	5
71	Toward nano-metal buried structure in InP – 20 nm wire and InP buried growth of tungsten. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 896-901.	1.3	5
72	Reduction of Base-Collector Capacitance in Submicron InP/GalnAs Heterojunction Bipolar Transistors with Buried Tungsten Wires. Japanese Journal of Applied Physics, 2001, 40, L735-L737.	0.8	5

#	Article	IF	Citations
73	Charging Time of Double-Layer Emitter in Heterojunction Bipolar Transistor Based on Transmission Formalism. Japanese Journal of Applied Physics, 2006, 45, L935-L937.	0.8	5
74	Emitter layer design for high-speed InP HBTs with high reliability., 2007,,.		5
75	Bias-Dependent Radio Frequency Performance for 40 nm InAs High-Electron-Mobility Transistor with a Cutoff Frequency Higher than 600 GHz. Japanese Journal of Applied Physics, 2012, 51, 110203.	0.8	5
76	Operation of 16-nm InGaAs channel multi-gate MOSFETs with regrown source/drain. , 2016, , .		5
77	High Power, 14xx-nm Eye-safe, Epitaxially Stacked Pulse Laser for Detection and Ranging Applications. , 2018, , .		5
78	GalnAs/InP Hot Electron Transistors Grown by OMVPE. Japanese Journal of Applied Physics, 1987, 26, L911-L913.	0.8	4
79	Observation of InP Surfaces after (NH4)2SxTreatment by a Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 1993, 32, L444-L446.	0.8	4
80	GalnAs/InP DHBT incorporating thick extrinsic base and selectively regrown emitter. Electronics Letters, 1995, 31, 1510-1511.	0.5	4
81	Proposal of buried metal heterojunction bipolar transistor and fabrication of HBT with buried tungsten. , 0, , .		4
82	MC simulation of ultrafast transistor using ballistic electron in intrinsic semiconductor and its fabrication feasibility. Journal of Physics: Conference Series, 2006, 38, 208-211.	0.3	4
83	Vertical InGaAs Channel Metal–Insulator–Semiconductor Field Effect Transistor with High Current Density. Japanese Journal of Applied Physics, 2011, 50, 014102.	0.8	4
84	InAlGaN/GaN-HEMT device technologies for W-band high-power amplifier. , 2016, , .		4
85	Vertical InGaAs Channel Metal–Insulator–Semiconductor Field Effect Transistor with High Current Density. Japanese Journal of Applied Physics, 2011, 50, 014102.	0.8	4
86	High-efficiency hot-electron transport in GalnAs/InP hot electron transistor grown by OMVPE. Electronics Letters, 1989, 25, 704-705.	0.5	3
87	High-Quality n-GalnAs Grown by OMVPE Using Si2H6by High-Velocity Flow. Japanese Journal of Applied Physics, 1990, 29, 1910-1911.	0.8	3
88	GalnAs/InP organometallic vapor phase epitaxy regrowth for ultrafine buried heterostructures with 50 nm pitch toward electron wave devices. Journal of Crystal Growth, 1994, 145, 698-701.	0.7	3
89	Effect of ion bombardment and bias fielding for [Ni/sub 81/Fe/sub 19/Cu] multilayers with giant magnetoresistance deposited by dual ion beam sputtering. IEEE Transactions on Magnetics, 1995, 31, 4103-4105.	1.2	3
90	Effects of Ni/sub 81/Fe/sub 19/ underlayer and Ar ion bombardment to deposition of (111) oriented Fe/sub 50/Mn/sub 50/ layers for spin valve devices. IEEE Transactions on Magnetics, 1996, 32, 4672-4674.	1.2	3

#	Article	IF	Citations
91	Seventy-nm-Pitch Patterning on CaF2by e-beam Exposure. Japanese Journal of Applied Physics, 1996, 35, 6342-6343.	0.8	3
92	High Peak-to-Valley Current Ratio GalnAs/GalnP Resonant Tunneling Diodes. Japanese Journal of Applied Physics, 1997, 36, 5079-5080.	0.8	3
93	First Fabrication of GalnAs/InP Buried Metal Heterojunction Bipolar Transistor and Reduction of Base-Collector Capacitance. Japanese Journal of Applied Physics, 2000, 39, L503-L505.	0.8	3
94	Fabrication of InP/GalnAs Double Heterojunction Bipolar Transistors with a 0.1-µm-Wide Emitter. Japanese Journal of Applied Physics, 2002, 41, L121-L123.	0.8	3
95	InP buried growth of SiO2 wires toward reduction of collector capacitance in HBT. Journal of Crystal Growth, 2007, 298, 867-870.	0.7	3
96	Monte Carlo Analysis of Base Transit Times of InP/GalnAs Heterojunction Bipolar Transistors with Ultrathin Graded Bases. Japanese Journal of Applied Physics, 2010, 49, 024302.	0.8	3
97	RF Performance Improvement of Metamorphic High-Electron Mobility Transistor Using $\frac{n}{x}hbox{Ga}_{1 - x}hbox{As}_{m}/(hbox{InAs})_{n}$ Superlattice-Channel Structure for Millimeter-Wave Applications. IEEE Electron Device Letters, 2010, 31, 677-679.$	2.2	3
98	Deviation From Proportional Relationship Between Emitter Charging Time and Inverse Current of Heterojunction Bipolar Transistors Operating at High Current Density. IEEE Electron Device Letters, 2011, 32, 491-493.	2.2	3
99	Fin width dependence on gate controllability of InGaAs channel FinFETs with regrown source/drain. Solid-State Electronics, 2016, 126, 92-95.	0.8	3
100	Scaling limit for InGaAs/GaAsSb heterojunction double-gate tunnel FETs from the viewpoint of direct band-to-band tunneling from source to drain induced off-characteristics deterioration. Japanese Journal of Applied Physics, 2016, 55, 070303.	0.8	3
101	Regrown source/drain in InGaAs multi-gate MOSFETs. Journal of Crystal Growth, 2019, 522, 11-15.	0.7	3
102	GaAsSb/InGaAs double-gate vertical tunnel FET with a subthreshold slope of 56 mV dec ^{â^'1} at room temperature. Japanese Journal of Applied Physics, 2019, 58, SBBA08.	0.8	3
103	InGaAs/AlAs triple-barrier p–i–n junction diode for realizing superlattice-based FET for steep slope. Japanese Journal of Applied Physics, 2016, 55, 118004.	0.8	3
104	C/sub BC/ reduction in GalnAs/InP buried metal heterojunction bipolar transistor., 0,,.		2
105	OMVPE buried ultrafine periodic structures in GalnAs and InP. Microelectronic Engineering, 1990, 11, 93-96.	1.1	2
106	Sub-micron GalnAs/InP hot electron transistors by EBL process and size dependence of current gain. Solid-State Electronics, 1998, 42, 1467-1470.	0.8	2
107	Challenges to Ultra-thin Resist Process for LEEPL. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 581-586.	0.1	2
108	Submicron InP/InGaAs composite channel MOSFETs with selectively regrown N ⁺ -source/drain buried in channel undercut., 2010,,.		2

#	Article	lF	Citations
109	InP HBT with 55-nm-wide emitter and relationship between emitter width and current density., 2012,,.		2
110	Performance Evaluation of InGaSb/AlSb P-Channel High-Hole-Mobility Transistor Faricated Using BCl3Dry Etching. Japanese Journal of Applied Physics, 2013, 52, 020203.	0.8	2
111	Channel thickness dependence on InGaAs MOSFET with n-InP source for high current density. IEICE Electronics Express, 2014, 11, 20140567-20140567.	0.3	2
112	Recent progress in compound semiconductor electron devices. IEICE Electronics Express, 2016, 13, 20162002-20162002.	0.3	2
113	Circuit speed oriented device design scheme for GaAsSb/InGaAs double-gate hetero-junction tunnel FETs. Japanese Journal of Applied Physics, 2020, 59, SGGA06.	0.8	2
114	Estimation of Collector Current Spreading in InGaAs SHBT Having 75-nm-Thick Collector. IEICE Transactions on Electronics, 2010, E93-C, 644-647.	0.3	2
115	Observation of quantum coherence properties of the hot electron. IEEE Transactions on Electron Devices, 1989, 36, 2620.	1.6	1
116	Improvement of GMR characteristics in [Ni/sub 81/Fe/sub 19//Cu] multilayers by interfacial modulation technique using Kr ions. IEEE Transactions on Magnetics, 1998, 34, 921-923.	1.2	1
117	Freestanding tungsten wires for BM-HET. , 0, , .		1
118	InP Hot Electron Transistors with Emitter Mesa Fabricated between Gate Electrodes for Reduction in Emitter-Gate Gate-Leakage Current. Japanese Journal of Applied Physics, 2004, 43, L183-L186.	0.8	1
119	High-Performance In0.52Al0.48As/In0.6Ga0.4As Power Metamorphic High Electron Mobility Transistor for Ka-Band Applications. Japanese Journal of Applied Physics, 2007, 46, 3385-3387.	0.8	1
120	InAs-Channel Metal-Oxide-Semiconductor HEMTs with Atomic-Layer-Deposited Al[sub 2]O[sub 3] Gate Dielectric. Electrochemical and Solid-State Letters, 2009, 12, H456.	2.2	1
121	InAs-Channel High-Electron-Mobility Transistors for Ultralow-Power Low Noise Amplifier Applications. Japanese Journal of Applied Physics, 2009, 48, 04C094.	0.8	1
122	Vertical InGaAs-MOSFET with hetero-launcher and undoped channel. , 2009, , .		1
123	Flip-Chip Packaging of Low-Noise Metamorphic High Electron Mobility Transistors on Low-Cost Organic Substrate. Japanese Journal of Applied Physics, 2011, 50, 096503.	0.8	1
124	Simulation Study and Reduction of Reverse Gate Leakage Current for GaN HEMTs., 2012,,.		1
125	High Open-Circuit Voltage Gain in Vertical InGaAs Channel Metal–Insulator–Semiconductor Field-Effect Transistor Using Heavily Doped Drain Region and Narrow Channel Mesa. Japanese Journal of Applied Physics, 2013, 52, 04CF05.	0.8	1
126	Loss reduction of Si optical waveguides by beam step-size fracturing technique in electron beam lithography. Japanese Journal of Applied Physics, 2014, 53, 06JB04.	0.8	1

#	Article	IF	Citations
127	InGaAs MOSFET source structures toward high speed/low power applications. , 2014, , .		1
128	Experimental approach for feasibility of superlattice FETs., 2016,,.		1
129	Wet etching for isolation of N-polar GaN HEMT structure by electrodeless photo-assisted electrochemical reaction. Japanese Journal of Applied Physics, 2021, 60, SCCF06.	0.8	1
130	Reduction of Output Conductance in Vertical InGaAs Channel Metal–Insulator–Semiconductor Field-Effect Transistor Using Heavily Doped Drain Region. Applied Physics Express, 2012, 5, 024101.	1.1	1
131	Source and Drain Concentration Dependence on Double Gate GaAsSb/InGaAs Tunnel FET. IEEJ Transactions on Electronics, Information and Systems, 2016, 136, 467-473.	0.1	1
132	Fabrication of InP/InGaAs SHBT on Si Substrate by Using Transferred Substrate Process. IEICE Transactions on Electronics, 2012, E95.C, 1323-1326.	0.3	1
133	Flip-Chip Packaging of Low-Noise Metamorphic High Electron Mobility Transistors on Low-Cost Organic Substrate. Japanese Journal of Applied Physics, 2011, 50, 096503.	0.8	1
134	InP/InGaAs MOSFET with Back-Electrode Structure Bonded on Si Substrate Using a BCB Adhesive Layer. , 2010, , .		1
135	Fabrication of InP/InGaAs DHBTs with Buried SiO2 Wires. IEICE Transactions on Electronics, 2011, E94-C, 830-834.	0.3	1
136	Reduction of Access Resistance of InP/InGaAs Composite-Channel MOSFET with Back-Source Electrode. IEICE Transactions on Electronics, 2012, E95.C, 904-909.	0.3	1
137	Simulation Study of Gate-Drain Leakage Current and Density of Polarization Charge at Heterojunction Interface in GaN HEMTs. IEEJ Transactions on Electronics, Information and Systems, 2022, 142, 348-353.	0.1	1
138	High P/V Ratio of GalnAs/InP Resonant Tunneling Diode by OMVPE., 0,,.		0
139	GMR Characteristics of Ni/sub $81/\text{Fe/sub}\ 19/$ Cu Multilayers Deposited by Kr Sputtering with Ar Ion Bombardment on Interfaces. , 0, , .		0
140	MIS emitter with epitaxial CaF ₂ layer as insulator. , 1997, , .		0
141	Hot electron interference by 40 nm-pitch double slit buried in semiconductor. Microelectronic Engineering, 1997, 35, 337-340.	1.1	0
142	Electrical properties of 100 nm pitch CrAu fine electrodes with 40 nm width on GalnAs toward hot electron interference/diffraction devices. Microelectronic Engineering, 1997, 35, 241-244.	1.1	0
143	Analysis of deflection sub-millimeter-wave amplifier. , 0, , .		0
144	Vacuum microelectronic electron emitter by InP double barrier diode toward RF application. , 0, , .		0

#	Article	IF	CITATIONS
145	Current modulation in fine electrode by hot electron passing through GalnAs/InP double slits. , 0, , .		O
146	Fabrication and I-V characterization of metal/SAM/metal devices. , 0, , .		0
147	InP hot electron transistor with a buried metallic gate for electron emission. , 0, , .		0
148	The impact of latent image quality on line edge roughness in electron beam lithography. , 0, , .		0
149	High-Performance In _{0.52} Al _{0.48} As/In _{0.6} Ga _{0.4} As Power Metamorphic HEMT for Ka-Band Applications. , 2006, , .		0
150	High Performance InAs-Channel HEMT for Low Voltage Milimeter Wave Applications. , 2007, , .		0
151	Investigation of impact ionization from InxGa1-xAs to InAs Channel HEMTs for high speed and low power applications. , 2008, , .		0
152	Hot electron transistors controlled by insulated gate with 70 NM-wide emitter. , 2008, , .		0
153	Increment of voltage gain of InP/InGaAs hot electron transistors controlled by insulated gate. , 2008, , .		0
154	A novel metamorphic high electron mobility transistors with (In <inf>x</inf> Ga <inf>1-x</inf> As) <inf>m</inf> /(InAs) <inf>n</inf> superlattice channel layer for millimeter-wave applications., 2009,,.		0
155	A 40-nm-Gate InAs/In <inf>0.7</inf> Ga <inf>0.3</inf> As Composite-Channel HEMT with 2200 mS/mm and 500-GHz f <inf>T</inf> . , 2009, , .		0
156	Fabrication of InP/InGaAs channel MOSFET with MOVPE selectively regrown source., 2009,,.		0
157	Selective undercut etching for ultra narrow mesa structure in vertical InGaAs channel MISFET. , 2010, , .		0
158	Bonding temperature effect on the performance of flip chip assembled 150nm mHEMT device on organic substrate. , 2010, , .		0
159	Submicron-channel InGaAs MISFET with epitaxially grown source. , 2010, , .		0
160	An 80 nm In <inf>0.7</inf> Ga <inf>0.3</inf> As MHEMT with flip-chip packaging for W-band low noise applications. , 2010, , .		0
161	High-current-density InP ultrafine devices for high-speed operation. , 2011, , .		0
162	Reduction of Base-Collector Capacitance in InP/InGaAs DHBT with Buried SiO ₂ Wires. IEICE Transactions on Electronics, 2012, E95.C, 917-920.	0.3	0

#	ARTICLE	IF	CITATIONS
163	Metal-Insulator-Semiconductor Field-Effect Transistors. Active and Passive Electronic Components, 2013, 2013, 1-2.	0.3	O
164	Growth process for high performance of InGaAs MOSFETs. , 2014, , .		0
165	N-polar GaN HEMT with Al2O3gate insulator. , 2019, , .		O
166	Delay Time Component of InGaAs MOSFET Caused by Dynamic Source Resistance. IEICE Transactions on Electronics, 2014, E97.C, 419-422.	0.3	0
167	Observation of InP and GalnAs Surfaces after (NH4)2Sx Treatment by a Scanning Tunneling Microscope. , 1994, , 513-517.		O
168	MOSFET with III-V Channel. IEEJ Transactions on Electronics, Information and Systems, 2016, 136, 437-443.	0.1	0