Xavier Bantreil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3677192/publications.pdf

Version: 2024-02-01

159525 233338 2,292 65 30 45 citations h-index g-index papers 85 85 85 2195 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of N-heterocyclic carbene ligands and derived ruthenium olefin metathesis catalysts. Nature Protocols, 2011, 6, 69-77.	5 . 5	171
2	Poly(ethylene glycol) as reaction medium for mild Mizoroki–Heck reaction in a ball-mill. Chemical Communications, 2012, 48, 11778.	2.2	91
3	Mixed N-heterocyclic carbene/phosphite ruthenium complexes: towards a new generation of olefin metathesis catalysts. Chemical Communications, 2010, 46, 7115.	2.2	88
4	Alternative Technologies That Facilitate Access to Discrete Metal Complexes. Chemical Reviews, 2019, 119, 7529-7609.	23.0	77
5	Aryl Sulfoxides from Allyl Sulfoxides via [2,3]-Sigmatropic Rearrangement and Domino Pd-Catalyzed Generation/Arylation of Sulfenate Anions. Organic Letters, 2010, 12, 320-323.	2.4	72
6	Cageâ€ike Copper(II) Silsesquioxanes: Transmetalation Reactions and Structural, Quantum Chemical, and Catalytic Studies. Chemistry - A European Journal, 2015, 21, 8758-8770.	1.7	65
7	Novel 1 <i>H</i> -Pyrrolo[3,2- <i>c</i>)]quinoline Based 5-HT ₆ Receptor Antagonists with Potential Application for the Treatment of Cognitive Disorders Associated with Alzheimer's Disease. ACS Chemical Neuroscience, 2016, 7, 972-983.	1.7	64
8	Backbone tuning in indenylidene–ruthenium complexes bearing an unsaturated <i>N</i> -heterocyclic carbene. Beilstein Journal of Organic Chemistry, 2010, 6, 1120-1126.	1.3	63
9	Synthesis and characterization of IPrMe-containing silver(I), gold(I) and gold(III) complexes. Dalton Transactions, 2009, , 6967.	1.6	62
10	N-Heterocyclic carbene containing complexes in catalysis. Annual Reports on the Progress of Chemistry Section B, 2009, 105, 232.	0.8	61
11	Cu(0), O ₂ and mechanical forces: a saving combination for efficient production of Cu–NHC complexes. Chemical Science, 2017, 8, 1086-1089.	3.7	61
12	Copper atalyzed Direct Synthesis of Benzamides from Alcohols and Amines. ChemCatChem, 2012, 4, 1922-1925.	1.8	60
13	Phosphine-Triggered Selectivity Switch in Silver-Catalyzed <i>>o</i> -Alkynylbenzohydroxamic Acid Cycloisomerizations. Organic Letters, 2016, 18, 4814-4817.	2.4	57
14	Olefin Metathesis Featuring Ruthenium Indenylidene Complexes with a Sterically Demanding NHC Ligand. Chemistry - A European Journal, 2011, 17, 5045-5053.	1.7	56
15	Synthesis and Reactivity of Ruthenium Phosphite Indenylidene Complexes. Organometallics, 2012, 31, 7415-7426.	1.1	56
16	A heterometallic (Fe ₆ Na ₈) cage-like silsesquioxane: synthesis, structure, spin glass behavior and high catalytic activity. RSC Advances, 2016, 6, 48165-48180.	1.7	53
17	Phosphites as ligands in ruthenium-benzylidene catalysts for olefin metathesis. Chemical Communications, 2011, 47, 7060.	2.2	51
18	Rutheniumâ€Indenylidene Complexes: Scope in Crossâ€Metathesis Transformations. Advanced Synthesis and Catalysis, 2008, 350, 2959-2966.	2.1	46

#	Article	IF	Citations
19	Ruthenium Complexes Bearing Two N-Heterocyclic Carbene Ligands in Low Catalyst Loading Olefin Metathesis Reactions. Organometallics, 2010, 29, 3007-3011.	1.1	44
20	Iron-catalyzed benzamide formation. Application to the synthesis of moclobemide. Tetrahedron, 2014, 70, 5093-5099.	1.0	42
21	Expedient Mechanosynthesis of <i>N</i> , <i>N</i> â€Dialkyl Imidazoliums and Silver(I)–Carbene Complexes in a Ballâ€Mill. Chemistry - A European Journal, 2015, 21, 17614-17617.	1.7	42
22	High-Cluster (Cu ₉) Cage Silsesquioxanes: Synthesis, Structure, and Catalytic Activity. Inorganic Chemistry, 2018, 57, 11524-11529.	1.9	40
23	Mechanochemistry for facilitated access to N,N-diaryl NHC metal complexes. New Journal of Chemistry, 2017, 41, 1057-1063.	1.4	39
24	Synthesis and post-synthetic modification of UiO-67 type metal-organic frameworks by mechanochemistry. Materials Letters, 2017, 197, 171-174.	1.3	38
25	Comprehensive study on olefin metathesis in PEG as an alternative solvent under microwave irradiation. Journal of Catalysis, 2012, 294, 113-118.	3.1	37
26	High Catalytic Activity of Heterometallic (Fe6Na7 and Fe6Na6) Cage Silsesquioxanes in Oxidations with Peroxides. Catalysts, 2017, 7, 101.	1.6	37
27	γ―and δâ€Lactams through Palladiumâ€Catalyzed Intramolecular Allylic Alkylation: Enantioselective Synthesis, NMR Investigation, and DFT Rationalization. Chemistry - A European Journal, 2011, 17, 2885-2896.	1.7	36
28	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 15360-15363.	7.2	36
29	Si ₁₀ Cu ₆ N ₄ Cage Hexacoppersilsesquioxanes Containing N Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorganic Chemistry, 2017, 56, 15026-15040.	1.9	36
30	lonic Complexes of Tetra―and Nonanuclear Cage Copper(II) Phenylsilsesquioxanes: Synthesis and High Activity in Oxidative Catalysis. ChemCatChem, 2017, 9, 4437-4447.	1.8	33
31	Unraveling the synthesis of homoleptic [Ag(N,N-diaryl-NHC) $<$ sub $>$ 2 $<$ /sub $>$]Y (Y = BF $<$ sub $>$ 4 $<$ /sub $>$,) Tj ETQq1 1 (0.784314 1.6	rggT /Overlo
32	Mixed N-Heterocyclic Carbene/Phosphite Ruthenium Complexes: The Effect of a Bulkier NHC Organometallics, 2013, 32, 6240-6247.	1.1	30
33	A ³ â€Coupling Reaction and [Ag(IPr) ₂]PF ₆ : A Successful Couple. European Journal of Organic Chemistry, 2017, 2017, 4642-4647.	1.2	26
34	A more sustainable and efficient access to IMes·HCl and IPr·HCl by ball-milling. Green Chemistry, 2018, 20, 964-968.	4.6	26
35	Sustainable Mechanosynthesis of Biologically Active Molecules. European Journal of Organic Chemistry, 2022, 2022, .	1.2	26
36	Heptanuclear Fe ₅ Cu ₂ -Phenylgermsesquioxane containing 2,2′-Bipyridine: Synthesis, Structure, and Catalytic Activity in Oxidation of C–H Compounds. Inorganic Chemistry, 2018, 57, 528-534.	1.9	25

3

#	Article	IF	Citations
37	Dual 5-HT ₆ and D ₃ Receptor Antagonists in a Group of 1 <i>H</i> Pyrrolo[3,2- <i>C/i) quinolines with Neuroprotective and Procognitive Activity. ACS Chemical Neuroscience, 2019, 10, 3183-3196.</i>	1.7	24
38	Synthesis and reactivity of furoquinolines bearing an external methylene-bond: access to reduced and spirocyclic structures. Organic and Biomolecular Chemistry, 2011, 9, 4831.	1.5	23
39	Synthesis, characterisation and cytotoxic activity evaluation of new metal-salen complexes based on the 1,2-bicyclo[2.2.2]octane bridge. Tetrahedron Letters, 2021, 63, 152706.	0.7	23
40	Continuous flow ring-closing metathesis, an environmentally-friendly route to 2,5-dihydro-1H-pyrrole-3-carboxylates. Green Chemistry, 2017, 19, 1647-1652.	4.6	22
41	Iron/Caffeine as a Catalytic System for Microwaveâ€Promoted Benzamide Formation. European Journal of Organic Chemistry, 2015, 2015, 417-422.	1.2	21
42	Hexacoppergermsesquioxanes as complexes with N-ligands: Synthesis, structure and catalytic properties. Journal of Organometallic Chemistry, 2019, 884, 17-28.	0.8	21
43	Highly Active [Pd(μâ€Cl)Cl(NHC)] ₂ Complexes in the Mizoroki–Heck Reaction. European Journal of Inorganic Chemistry, 2013, 2013, 2007-2010.	1.0	20
44	Mechanosynthesis of sydnone-containing coordination complexes. Chemical Communications, 2019, 55, 9495-9498.	2.2	20
45	Solving the challenging synthesis of highly cytotoxic silver complexes bearing sterically hindered NHC ligands with mechanochemistry. Dalton Transactions, 2020, 49, 12592-12598.	1.6	20
46	mTOR activation by constitutively active serotonin6 receptors as new paradigm in neuropathic pain and its treatment. Progress in Neurobiology, 2020, 193, 101846.	2.8	20
47	Mechanosynthesis of Noels-type NHC–Ruthenium Complexes and Applications in Ring-Opening Metathesis Polymerization. Organometallics, 2020, 39, 636-639.	1.1	20
48	Palladium-catalyzed intramolecular allylic alkylation of \hat{l}_{\pm} -sulfinyl carbanions: a new asymmetric route to enantiopure \hat{l}^3 -lactams. Tetrahedron Letters, 2010, 51, 1459-1461.	0.7	18
49	Phosphite ligands in Ru-based olefin metathesis catalysts. Monatshefte Fýr Chemie, 2015, 146, 1043-1052.	0.9	18
50	A new "bicycle helmet―like copper(<scp>ii</scp>),sodiumphenylsilsesquioxane. Synthesis, structure and catalytic activity. Dalton Transactions, 2018, 47, 15666-15669.	1.6	18
51	Sustainable Synthesis of a Potent and Selective 5-HT ₇ Receptor Antagonist Using a Mechanochemical Approach. Journal of Organic Chemistry, 2020, 85, 10958-10965.	1.7	17
52	Straightforward Ballâ€Milling Access to Dinucleoside 5′,5′â€Polyphosphates via Phosphorimidazolide Intermediates. Chemistry - A European Journal, 2019, 25, 2477-2481.	1.7	15
53	Cu42Ge24Na4—A Giant Trimetallic Sesquioxane Cage: Synthesis, Structure, and Catalytic Activity. Catalysts, 2018, 8, 484.	1.6	14
54	Coordination complexes involving sydnones as ligands. Dalton Transactions, 2019, 48, 15753-15761.	1.6	14

#	Article	IF	CITATIONS
55	Structure-Based Design and Optimization of FPPQ, a Dual-Acting 5-HT ₃ and 5-HT ₆ Receptor Antagonist with Antipsychotic and Procognitive Properties. Journal of Medicinal Chemistry, 2021, 64, 13279-13298.	2.9	14
56	Application of the ring-closing metathesis to the formation of 2-aryl-1H-pyrrole-3-carboxylates as building blocks for biologically active compounds. Tetrahedron, 2016, 72, 7462-7469.	1.0	10
57	Expedient synthesis of NOxy-Heterocyclic Carbenes (NOHC) ligands and metal complexes using mechanochemistry. Journal of Organometallic Chemistry, 2021, 949, 121914.	0.8	10
58	2-Phenyl-1 <i>H</i> -pyrrole-3-carboxamide as a New Scaffold for Developing 5-HT ₆ Receptor Inverse Agonists with Cognition-Enhancing Activity. ACS Chemical Neuroscience, 2021, 12, 1228-1240.	1.7	9
59	Design, Sustainable Synthesis and Biological Evaluation of a Novel Dual $\hat{l}\pm 2A/5$ -HT7 Receptor Antagonist with Antidepressant-Like Properties. Molecules, 2021, 26, 3828.	1.7	8
60	Neuropathic pain-alleviating activity of novel 5-HT6 receptor inverse agonists derived from 2-aryl-1H-pyrrole-3-carboxamide. Bioorganic Chemistry, 2021, 115, 105218.	2.0	4
61	Azoliums and Ag(I)â€Nâ€Heterocyclic Carbene Thioglycosides: Synthesis, Reactivity and Bioactivity. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
62	Enantioselective \hat{I}^3 -Lactam Synthesis via Palladium-Catalyzed Intramolecular Asymmetric Allylic Alkylation. Synlett, 2009, 2009, 1441-1444.	1.0	3
63	Green approaches for the synthesis of nucleotides, their conjugates and analogues. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 930-931.	0.8	2
64	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie, 2016, 128, 15586-15589.	1.6	1
65	Alternative synthetic approaches for nucleotides and derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-4.	0.8	0