
Ehsan Tavakkoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3677156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Field applications of gypsum reduce pH and improve soil C in highly alkaline soils in southern Australia's dryland cropping region. Soil Use and Management, 2022, 38, 466-477.	4.9	18
2	Unraveling microbiomes and functions associated with strategic tillage, stubble, and fertilizer management. Agriculture, Ecosystems and Environment, 2022, 323, 107686.	5.3	8
3	Copper nanoparticles decorated N-doped mesoporous carbon with bimodal pores for selective gas separation and energy storage applications. Chemical Engineering Journal, 2022, 431, 134056.	12.7	12
4	Nanoporous materials for pesticide formulation and delivery in the agricultural sector. Journal of Controlled Release, 2022, 343, 187-206.	9.9	46
5	Disentangling carbon stabilization in a Calcisol subsoil amended with iron oxyhydroxides: A dual-13C isotope approach. Soil Biology and Biochemistry, 2022, , 108711.	8.8	2
6	Ameliorating alkaline dispersive subsoils with organic amendments: Are productivity responses due to nutrition or improved soil structure?. Plant and Soil, 2022, 480, 227-244.	3.7	6
7	Ameliorating dense clay subsoils to increase the yield of rain-fed crops. Advances in Agronomy, 2021, 165, 249-300.	5.2	8
8	Priming, stabilization and temperature sensitivity of native SOC is controlled by microbial responses and physicochemical properties of biochar. Soil Biology and Biochemistry, 2021, 154, 108139.	8.8	48
9	Management zone delineation based on soil properties measured during the reproductive stage of rice in the field. Land Degradation and Development, 2021, 32, 3106-3121.	3.9	2
10	Preferential ammonium: nitrate ratio of blueberry is regulated by nitrogen transport and reduction systems. Scientia Horticulturae, 2021, 288, 110345.	3.6	12
11	Effects of nitrogen-enriched biochar on rice growth and yield, iron dynamics, and soil carbon storage and emissions: A tool to improve sustainable rice cultivation. Environmental Pollution, 2021, 287, 117565.	7.5	36
12	Additive effects of organic and inorganic amendments can significantly improve structural stability of a sodic dispersive subsoil. Geoderma, 2021, 404, 115281.	5.1	13
13	Nanostructured Carbon Nitrides for CO ₂ Capture and Conversion. Advanced Materials, 2020, 32, e1904635.	21.0	188
14	Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil. Biology and Fertility of Soils, 2020, 56, 219-233.	4.3	52
15	Sulfur and nitrogen responses by barley and wheat on a sandy soil in a semi-arid environment. Crop and Pasture Science, 2020, 71, 894.	1.5	2
16	Commentary: Bread Wheat With High Salinity and Sodicity Tolerance. Frontiers in Plant Science, 2020, 11, 1194.	3.6	6
17	Carbon Capture and Conversion: Nanostructured Carbon Nitrides for CO ₂ Capture and Conversion (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070142.	21.0	4
18	Engineered Phosphate Fertilizers with Dual-Release Properties. Industrial & Engineering Chemistry Research, 2020, 59, 5512-5524.	3.7	15

Ehsan Tavakkoli

#	Article	IF	CITATIONS
19	Priming of soil organic carbon induced by sugarcane residues and its biochar control the source of nitrogen for plant uptake: A dual 13C and 15N isotope three-source-partitioning study. Soil Biology and Biochemistry, 2020, 146, 107792.	8.8	31
20	Balanced nutrient stoichiometry of organic amendments enhances carbon priming in a poorly structured sodic subsoil. Soil Biology and Biochemistry, 2020, 145, 107800.	8.8	26
21	Assessing plant-available glyphosate in contrasting soils by diffusive gradient in thin-films technique (DGT). Science of the Total Environment, 2019, 646, 735-744.	8.0	11
22	Short-term effects of organo-mineral enriched biochar fertiliser on ginger yield and nutrient cycling. Journal of Soils and Sediments, 2019, 19, 668-682.	3.0	33
23	Balancing nutrient stoichiometry facilitates the fate of wheat residueâ€ʿcarbon in physically defined soil organic matter fractions. Geoderma, 2019, 354, 113883.	5.1	35
24	Optimisation of phosphate loading on graphene oxide–Fe(<scp>iii</scp>) composites – possibilities for engineering slow release fertilisers. New Journal of Chemistry, 2019, 43, 8580-8589.	2.8	6
25	Interactive carbon priming, microbial response and biochar persistence in a Vertisol with varied inputs of biochar and labile organic matter. European Journal of Soil Science, 2019, 70, 960-974.	3.9	26
26	Graphene oxide-Fe(III) composite containing phosphate – A novel slow release fertilizer for improved agriculture management. Journal of Cleaner Production, 2018, 185, 97-104.	9.3	73
27	The accumulation of rhizodeposits in organo-mineral fractions promoted biochar-induced negative priming of native soil organic carbon in Ferralsol. Soil Biology and Biochemistry, 2018, 118, 91-96.	8.8	23
28	Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils. Soil Biology and Biochemistry, 2018, 126, 168-178.	8.8	57
29	A survey of total and dissolved organic carbon in alkaline soils of southern Australia. Soil Research, 2017, 55, 617.	1.1	15
30	Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature Climate Change, 2017, 7, 371-376.	18.8	232
31	Exchangeable cations and clay dispersion: net dispersive charge, a new concept for dispersive soil. European Journal of Soil Science, 2016, 67, 659-665.	3.9	78
32	The effect of cation–anion interactions on soil <scp>pH</scp> and solubility of organic carbon. European Journal of Soil Science, 2015, 66, 1054-1062.	3.9	60
33	Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using an isotopic dilution technique. Environmental Pollution, 2015, 199, 244-252.	7.5	5
34	Effects of Chemical Amendments on the Lability and Speciation of Metals in Anaerobically Digested Biosolids. Environmental Science & Technology, 2013, 47, 11157-11165.	10.0	20
35	Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environmental Pollution, 2013, 176, 193-197.	7.5	184
36	A radio-isotopic dilution technique for functional characterisation of the associations between inorganic contaminants and water-dispersible naturally occurring soil colloids. Environmental Chemistry, 2013, 10, 341.	1.5	9

Ehsan Tavakkoli

#	Article	IF	CITATIONS
37	A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. Journal of Experimental Botany, 2012, 63, 3853-3867.	4.8	67
38	Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge. Environmental Science & Technology, 2012, 46, 9089-9096.	10.0	193
39	Comparing genotypic variation in faba bean (Vicia faba L.) in response to salinity in hydroponic and field experiments. Field Crops Research, 2012, 127, 99-108.	5.1	30
40	Interaction of Silicon and Phosphorus Mitigate Manganese Toxicity in Rice in a Highly Weathered Soil. Communications in Soil Science and Plant Analysis, 2011, 42, 503-513.	1.4	11
41	Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilisation. Journal of Plant Nutrition and Soil Science, 2011, 174, 437-446.	1.9	62
42	Additive effects of Na+ and Cl– ions on barley growth under salinity stress. Journal of Experimental Botany, 2011, 62, 2189-2203.	4.8	379
43	High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 2010, 61, 4449-4459.	4.8	423
44	The response of barley to salinity stress differs between hydroponic and soil systems. Functional Plant Biology, 2010, 37, 621.	2.1	131