Alexander F Hoffman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3676916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A role for α7 nicotinic receptors in promoting stress resilience in female mice. Neuropsychopharmacology, 2022, , .	5.4	0
2	Reversing anterior insular cortex neuronal hypoexcitability attenuates compulsive behavior in adolescent rats. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121247119.	7.1	3
3	Muscarinic Acetylcholine M ₂ Receptors Regulate Lateral Habenula Neuron Activity and Control Cocaine Seeking Behavior. Journal of Neuroscience, 2022, 42, 5552-5563.	3.6	5
4	Impairment of Synaptic Plasticity by Cannabis, Δ ⁹ -THC, and Synthetic Cannabinoids. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a039743.	6.2	10
5	Effects of Withdrawal from Cocaine Self-Administration on Rat Orbitofrontal Cortex Parvalbumin Neurons Expressing <i>Cre recombinase</i> : Sex-Dependent Changes in Neuronal Function and Unaltered Serotonin Signaling. ENeuro, 2021, 8, ENEURO.0017-21.2021.	1.9	9
6	Striatal Rgs4 regulates feeding and susceptibility to diet-induced obesity. Molecular Psychiatry, 2020, 25, 2058-2069.	7.9	14
7	Positive Allosteric Modulation of the 5-HT _{1A} Receptor by Indole-Based Synthetic Cannabinoids Abused by Humans. ACS Chemical Neuroscience, 2020, 11, 1400-1405.	3.5	19
8	(-)-Phenserine and the prevention of pre-programmed cell death and neuroinflammation in mild traumatic brain injury and Alzheimer's disease challenged mice. Neurobiology of Disease, 2019, 130, 104528.	4.4	33
9	Neuron-Specific Genome Modification in the Adult Rat Brain Using CRISPR-Cas9 Transgenic Rats. Neuron, 2019, 102, 105-119.e8.	8.1	62
10	Novel and Potent Dopamine D ₂ Receptor Go-Protein Biased Agonists. ACS Pharmacology and Translational Science, 2019, 2, 52-65.	4.9	43
11	Gs-Âversus Golf-dependent functional selectivity mediated by the dopamine D1 receptor. Nature Communications, 2018, 9, 486.	12.8	38
12	Optogenetic silencing of a corticotropin-releasing factor pathway from the central amygdala to the bed nucleus of the stria terminalis disrupts sustained fear. Molecular Psychiatry, 2018, 23, 914-922.	7.9	72
13	Cannabinoid disruption of learning mechanisms involved in reward processing. Learning and Memory, 2018, 25, 435-445.	1.3	12
14	Enduring Loss of Serotonergic Control of Orbitofrontal Cortex Function Following Contingent and Noncontingent Cocaine Exposure. Cerebral Cortex, 2017, 27, 5463-5476.	2.9	6
15	Disruption of hippocampal synaptic transmission and longâ€ŧerm potentiation by psychoactive synthetic cannabinoid †Spice' compounds: comparison with l" ⁹ â€ŧetrahydrocannabinol. Addiction Biology, 2017, 22, 390-399.	2.6	36
16	Cannabinoids as hippocampal network administrators. Neuropharmacology, 2017, 124, 25-37.	4.1	46
17	Enhanced Dopamine Release by Dopamine Transport Inhibitors Described by a Restricted Diffusion Model and Fast-Scan Cyclic Voltammetry. ACS Chemical Neuroscience, 2016, 7, 700-709.	3.5	37
18	Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nature Neuroscience, 2015, 18, 386-392.	14.8	222

Alexander F Hoffman

#	Article	IF	CITATIONS
19	Norepinephrine Activates Dopamine D ₄ Receptors in the Rat Lateral Habenula. Journal of Neuroscience, 2015, 35, 3460-3469.	3.6	62
20	Orbitofrontal activation restores insight lost after cocaine use. Nature Neuroscience, 2014, 17, 1092-1099.	14.8	57
21	A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons. Nature Communications, 2014, 5, 5390.	12.8	158
22	Single rodent mesohabenular axons release glutamate and GABA. Nature Neuroscience, 2014, 17, 1543-1551.	14.8	290
23	Synaptic Targets of Â9-Tetrahydrocannabinol in the Central Nervous System. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a012237-a012237.	6.2	49
24	Powerful Cocaine-Like Actions of 3,4-Methylenedioxypyrovalerone (MDPV), a Principal Constituent of Psychoactive â€~Bath Salts' Products. Neuropsychopharmacology, 2013, 38, 552-562.	5.4	361
25	Cocaine Drives Aversive Conditioning via Delayed Activation of Dopamine-Responsive Habenular and Midbrain Pathways. Journal of Neuroscience, 2013, 33, 7501-7512.	3.6	175
26	Dopamine D ₄ Receptor Excitation of Lateral Habenula Neurons via Multiple Cellular Mechanisms. Journal of Neuroscience, 2013, 33, 16853-16864.	3.6	56
27	PTEN deletion enhances survival, neurite outgrowth and function of dopamine neuron grafts to MitoPark mice. Brain, 2012, 135, 2736-2749.	7.6	39
28	Silent synapses in selectively activated nucleus accumbens neurons following cocaine sensitization. Nature Neuroscience, 2012, 15, 1556-1562.	14.8	85
29	Altered dopamine metabolism and increased vulnerability to MPTP in mice with partial deficiency of mitochondrial complex I in dopamine neurons. Human Molecular Genetics, 2012, 21, 1078-1089.	2.9	69
30	Attenuated response to methamphetamine sensitization and deficits in motor learning and memory after selective deletion of Â-catenin in dopamine neurons. Learning and Memory, 2012, 19, 341-350.	1.3	15
31	Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson's disease. FASEB Journal, 2011, 25, 1333-1344.	0.5	112
32	NMDA Receptors on Non-Dopaminergic Neurons in the VTA Support Cocaine Sensitization. PLoS ONE, 2010, 5, e12141.	2.5	39
33	Control of Cannabinoid CB ₁ Receptor Function on Glutamate Axon Terminals by Endogenous Adenosine Acting at A ₁ Receptors. Journal of Neuroscience, 2010, 30, 545-555.	3.6	91
34	Nogo receptor 1 regulates formation of lasting memories. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20476-20481.	7.1	76
35	Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1-receptor-knockout mice. Psychopharmacology, 2009, 204, 1-11.	3.1	68
36	Analogs of JHU75528, a PET ligand for imaging of cerebral cannabinoid receptors (CB1): Development of ligands with optimized lipophilicity and binding affinity. European Journal of Medicinal Chemistry, 2009, 44, 593-608.	5.5	16

#	Article	IF	CITATIONS
37	MPTPâ€induced deficits in striatal synaptic plasticity are prevented by glial cell lineâ€derived neurotrophic factor expressed <i>via</i> an adenoâ€associated viral vector. FASEB Journal, 2008, 22, 261-275.	0.5	51
38	Opposing actions of chronic Â9-tetrahydrocannabinol and cannabinoid antagonists on hippocampal long-term potentiation. Learning and Memory, 2007, 14, 63-74.	1.3	126
39	Visualizing Cannabinoid Effects Using Brain Slice Imaging and Electrophysiological Approaches. , 2006, 123, 105-112.		1
40	Species and strain differences in the expression of a novel glutamate-modulating cannabinoid receptor in the rodent hippocampus. European Journal of Neuroscience, 2005, 22, 2387-2391.	2.6	50
41	Marijuana and cannabinoid regulation of brain reward circuits. British Journal of Pharmacology, 2004, 143, 227-234.	5.4	227
42	Functional localization of cannabinoid receptors and endogenous cannabinoid production in distinct neuron populations of the hippocampus. European Journal of Neuroscience, 2003, 18, 524-534.	2.6	76
43	Synthesis, Structureâ aActivity Relationship, and Evaluation of SR141716 Analogues:  Development of Central Cannabinoid Receptor Ligands with Lower Lipophilicity. Journal of Medicinal Chemistry, 2003, 46, 642-645.	6.4	125
44	Functional Tolerance and Blockade of Long-Term Depression at Synapses in the Nucleus Accumbens after Chronic Cannabinoid Exposure. Journal of Neuroscience, 2003, 23, 4815-4820.	3.6	183
45	Contribution of the Hyperpolarization-Activated Current (<i>I</i> _h) to Membrane Potential and GABA Release in Hippocampal Interneurons. Journal of Neurophysiology, 2001, 86, 261-268.	1.8	148
46	Direct Actions of Cannabinoids on Synaptic Transmission in the Nucleus Accumbens: A Comparison With Opioids. Journal of Neurophysiology, 2001, 85, 72-83.	1.8	182
47	Effects of recording media composition on the responses of Nafion-coated carbon fiber microelectrodes measured using high-speed chronoamperometry. Journal of Neuroscience Methods, 2001, 109, 13-21.	2.5	83
48	Mechanisms of Cannabinoid Inhibition of GABA _A Synaptic Transmission in the Hippocampus. Journal of Neuroscience, 2000, 20, 2470-2479.	3.6	384
49	EFFECTS OF ETHANOL ON EXTRACELLULAR AMINO ACID LEVELS IN HIGH-AND LOW-ALCOHOL SENSITIVE RATS: A MICRODIALYSIS STUDY. Alcohol and Alcoholism, 2000, 35, 548-553.	1.6	68
50	Voltage-dependency of the dopamine transporter in the rat substantia nigra. Neuroscience Letters, 1999, 260, 105-108.	2.1	34
51	Functional Effects of GDNF in Normal and Parkinsonian Rats and Monkeys. , 1999, , 419-435.		3
52	Nicotine-evoked nitric oxide release in the rat hippocampal slice. Neuroscience Letters, 1998, 255, 127-130.	2.1	35
53	In Vivo Electrochemical Studies of Dopamine Clearance in the Rat Substantia Nigra: Effects of Locally Applied Uptake Inhibitors and Unilateral 6â€Hydroxydopamine Lesions. Journal of Neurochemistry, 1998, 70, 179-189.	3.9	49
54	Functional Effects of GDNFon Dopamine Neurons in Animal Models of Parkinson's Disease. Advances in Behavioral Biology, 1998, , 607-614.	0.2	1

#	Article	IF	CITATIONS
55	Voltage-Dependency of the Dopamine Transporter in Rat Brain. Advances in Pharmacology, 1997, 42, 195-198.	2.0	11
56	In VivoMicrodialysis Studies of Somatodendritic Dopamine Release in the Rat Substantia Nigra: Effects of Unilateral 6-OHDA Lesions and GDNF. Experimental Neurology, 1997, 147, 130-141.	4.1	46
57	Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. Journal of Comparative Neurology, 1995, 355, 479-489.	1.6	284
58	Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Research Bulletin, 1995, 36, 425-432.	3.0	224
59	Clial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neuroscience Letters, 1994, 182, 107-111.	2.1	431
60	Chronic Treatment with Levodopa and/or Selegiline Does Not Affect Behavioral Recovery Induced by Fetal Ventral Mesencephalic Grafts in Unilaterally 6-Hydroxydopamine-Lesioned Rats. Experimental Neurology, 1994, 130, 261-268.	4.1	13
61	Allogeneic grafts of fetal dopamine neurons: Behavioral indices of immunological interactions. Neuroscience Letters, 1994, 171, 32-36.	2.1	24