

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3676853/publications.pdf Version: 2024-02-01

IIA SHE

#	Article	IF	CITATIONS
1	Latest research advances on magnesium and magnesium alloys worldwide. Journal of Magnesium and Alloys, 2020, 8, 1-41.	11.9	852
2	Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 630, 36-44.	5.6	167
3	Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys. Journal of Magnesium and Alloys, 2013, 1, 242-248.	11.9	135
4	Development of magnesium-graphene nanoplatelets composite. Journal of Composite Materials, 2015, 49, 285-293.	2.4	121
5	Enhancing mechanical properties of Mg–Sn alloys by combining addition of Ca and Zn. Materials and Design, 2015, 83, 736-744.	7.0	118
6	Thermal and electrical conductivity of binary magnesium alloys. Journal of Materials Science, 2014, 49, 3107-3124.	3.7	114
7	High strength and superior ductility of an ultra-fine grained magnesium–manganese alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 202-207.	5.6	85
8	High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method. Journal of Magnesium and Alloys, 2016, 4, 270-277.	11.9	80
9	Microstructure and mechanical properties of Mg–Al–Sn extruded alloys. Journal of Alloys and Compounds, 2016, 657, 893-905.	5.5	77
10	Effects of Mn addition on the microstructures, mechanical properties and work-hardening of Mg-1Sn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 778-785.	5.6	75
11	Improved mechanical proprieties of "magnesium based composites―with titanium–aluminum hybrids. Journal of Magnesium and Alloys, 2015, 3, 1-9.	11.9	72
12	Effect of high Mn content on development of ultra-fine grain extruded magnesium alloy. Materials and Design, 2016, 90, 7-12.	7.0	64
13	Role of second phases and grain boundaries on dynamic recrystallization behavior in ZK60 magnesium alloy. Journal of Alloys and Compounds, 2021, 861, 157958.	5.5	55
14	Novel low-cost magnesium alloys with high yield strength and plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138332.	5.6	53
15	Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140569.	5.6	47
16	Correlation on the Electrical and Thermal Conductivity for Binary Mg–Al and Mg–Zn Alloys. International Journal of Thermophysics, 2013, 34, 1336-1346.	2.1	46
17	Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy. Materials Characterization, 2018, 136, 310-317.	4.4	46
18	Improvement of strength-ductility balance by Mn addition in Mg–Ca extruded alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138796.	5.6	45

Jia She

#	Article	IF	CITATIONS
19	Effect of texture on the electromagnetic shielding property of magnesium alloy. Materials Letters, 2015, 157, 73-76.	2.6	41
20	Development of high strength and ductility in Mg–2Zn extruded alloy by high content Mn-alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 765, 138203.	5.6	40
21	Effect of substitution of Zn with Ni on microstructure evolution and mechanical properties of LPSO dominant Mg–Y–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138735.	5.6	40
22	Dynamic precipitation and enhanced mechanical properties of ZK60 magnesium alloy achieved by low temperature extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142143.	5.6	38
23	A strategy to regulate the microstructure and properties of Mg-2.0Zn-1.5Mn magnesium alloy by tracing the existence of Mn element. Journal of Alloys and Compounds, 2022, 890, 161789.	5.5	32
24	Development of high-strength, low-cost wrought Mg–2.0 mass% Zn alloy with high Mn content. Progress in Natural Science: Materials International, 2016, 26, 630-635.	4.4	31
25	High conductivity and high strength Mg–Zn–Cu alloy. Materials Science and Technology, 2014, 30, 759-764.	1.6	29
26	A review of the design, processes, and properties of Mg-based composites. Nanotechnology Reviews, 2022, 11, 712-730.	5.8	27
27	A study of the corrosion behavior of AZ31 Mg alloy in depth direction after surface nanocrystallization. Surface and Coatings Technology, 2020, 396, 125968.	4.8	26
28	Novel on-line twist extrusion process for bulk magnesium alloys. Materials and Design, 2019, 182, 108011.	7.0	25
29	Novel continuous forging extrusion in a one-step extrusion process for bulk ultrafine magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138144.	5.6	24
30	Microstructures and mechanical properties of as-extruded Mg–5Sn–1Zn–xAl (x=1, 3 and 5) alloys. Progress in Natural Science: Materials International, 2015, 25, 267-275.	4.4	23
31	Achieving superior combination of yield strength and ductility in Mg–Mn–Al alloys via ultrafine grain structure. Journal of Materials Research and Technology, 2021, 15, 1252-1265.	5.8	22
32	Effects of optimizing continuous forging extrusion process on the microstructure and mechanical properties of AZ31 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142892.	5.6	22
33	Novel in situ synthesized zirconium matrix composites reinforced with ZrC particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6454-6458.	5.6	21
34	Regulating Precipitates by Simple Cold Deformations to Strengthen Mg Alloys: A Review. Materials, 2019, 12, 2507.	2.9	18
35	Microstructure and mechanical properties of asextruded Mg– <i>x</i> Al–5Sn–0·3Mn alloys (<i>x</i> = 1, 3, 6 and 9). Materials Science and Technology, 2015, 31, 344-348.	1.6	17
36	In situ synthesized (ZrB2+ZrC) hybrid short fibers reinforced Zr matrix composites for nuclear applications. International Journal of Refractory Metals and Hard Materials, 2011, 29, 401-404.	3.8	15

Jia She

#	Article	IF	CITATIONS
37	Experimental study of Al–Zr–Y system phase equilibria at 773K. Journal of Alloys and Compounds, 2010, 497, 118-120.	5.5	14
38	High volume intermetallics reinforced Ti-based composites in situ synthesized from Ti–Si–Sn ternary system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3871-3875.	5.6	14
39	A reverse design model for high-performance and low-cost magnesium alloys by machine learning. Computational Materials Science, 2022, 201, 110881.	3.0	14
40	The phase equilibria in the Ti–Cu–Y ternary system at 773 K. Journal of Alloys and Compounds, 2009, 485, 261-263.	5.5	13
41	The role of Nd on the microstructural evolution and compressive behavior of Ti–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 583-588.	5.6	12
42	Phase equilibria in the Al–Zr–Ce system at 773K. Journal of Alloys and Compounds, 2010, 491, 200-202.	5.5	11
43	Effect of Cu/Zn on microstructure and mechanical properties of extruded Mg–Sn alloys. Materials Science and Technology, 2016, 32, 1240-1248.	1.6	11
44	The Edge Crack, Texture Evolution, and Mechanical Properties of Mg-1Al-1Sn-Mn Alloy Sheets Prepared Using On-Line Heating Rolling. Metals, 2018, 8, 860.	2.3	11
45	Study on the effects of manganese on the grain structure and mechanical properties of Mg-0.5Ce alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 821, 141567.	5.6	11
46	Activations of stacking faults in the calcium-containing magnesium alloys under compression. Journal of Alloys and Compounds, 2017, 692, 898-902.	5.5	10
47	The phase relationships in the Gd–Ti–Sn ternary system at 473 K and the new compound GdSn4Ti6. Journal of Alloys and Compounds, 2010, 489, 384-388.	5.5	9
48	Effect of Mg2Sn Intermetallic on the Grain Refinement in As-cast AM Series Alloy. Journal of Materials Engineering and Performance, 2015, 24, 2937-2943.	2.5	9
49	The phase equilibria in the Pr–Si–Zr ternary system at 773K. Journal of Alloys and Compounds, 2011, 509, 246-251.	5.5	8
50	Phase Equilibria of the Cu-Ti-Er System at 773ÂK (500°C) and Stability of the CuTi3 Phase. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4015-4022.	2.2	8
51	In situ synthesized Ti5Si3/Ti–Mo lightweight structural composites. International Journal of Refractory Metals and Hard Materials, 2013, 41, 432-436.	3.8	8
52	Phase equilibria of the Al–Pr–Zr ternary system at 773K. Journal of Alloys and Compounds, 2010, 503, 57-60.	5.5	7
53	Influence of Sn addition on mechanical properties of gas tungsten arc welded AM60 Mg alloy sheets. Transactions of Nonferrous Metals Society of China, 2016, 26, 2051-2057.	4.2	7
54	Effect of Al on microstructure and mechanical properties of as-extruded Mg–1Mn alloy sheet. Progress in Natural Science: Materials International, 2020, 30, 402-409.	4.4	7

Jia She

#	Article	IF	CITATIONS
55	The Effect of Multiple Shot Peening on the Corrosion Behavior of Duplex Stainless Steel. Journal of Materials Engineering and Performance, 2018, 27, 1396-1403.	2.5	6
56	Microstructure and Mechanical Properties of Mg–6Al–1Sn–0.3Mn Alloy Sheet Fabricated through Extrusion Combined with Rolling. Crystals, 2018, 8, 356.	2.2	6
57	Effects of welding wire composition on the repair welds of sand-cast Mg–Gd–Y alloy: Microstructure and mechanical properties. Vacuum, 2022, 199, 110919.	3.5	5
58	The phase relations in the Ce–Sn–Ti ternary system at 473K. Journal of Alloys and Compounds, 2010, 496, 155-158.	5.5	4
59	The Effect of Aluminum Dihydrogen Phosphate on the Enhanced Mechanical Properties of Aluminum Foams. Materials Transactions, 2018, 59, 922-926.	1.2	4
60	The 773K isothermal section of the Ti–Co–V ternary system. Journal of Alloys and Compounds, 2009, 481, 233-235.	5.5	3
61	Phase equilibria in the ternary Al–Zr–La system. Journal of Alloys and Compounds, 2010, 507, 62-66.	5.5	2
62	Excellent Double-Aging Strengthening Effect with the High Density γ' Phase of 945A Nickel-Based Alloy. Crystals, 2022, 12, 175.	2.2	2
63	Significant Improvement of Strength in Wrought 945A Ni-Based Superalloy by Aging Treatment. Crystals, 2021, 11, 627.	2.2	1