Cheol-Min Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3676479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expedient Synthesis of Highly Substituted Pyrroles via Tandem Rearrangement of α-Diazo Oxime Ethers. Journal of the American Chemical Society, 2012, 134, 4104-4107.	13.7	164
2	Synthesis of Pyridines by Carbenoidâ€Mediated Ring Opening of 2 <i>H</i> â€Azirines. Angewandte Chemie - International Edition, 2013, 52, 2212-2216.	13.8	138
3	Stereoselective Synthesis of αâ€Diazo Oxime Ethers and Their Application in the Synthesis of Highly Substituted Pyrroles through a [3+2]â€Cycloaddition. Angewandte Chemie - International Edition, 2010, 49, 7963-7967.	13.8	91
4	Synthesis of 2-aminofurans and 2-unsubstituted furans via carbenoid-mediated [3 + 2] cycloaddition. Chemical Communications, 2012, 48, 3133.	4.1	89
5	Synthesis of Unsymmetrical Pyrazines Based on α-Diazo Oxime Ethers. Organic Letters, 2015, 17, 395-397.	4.6	87
6	Facile synthesis of 2-alkyl/aryloxy-2H-azirines and their application in the synthesis of pyrroles. Chemical Communications, 2012, 48, 3996.	4.1	63
7	A catalyst-controlled selective synthesis of pyridines and pyrroles. Chemical Science, 2014, 5, 2347-2351.	7.4	60
8	Alkyne–Alkene [2 + 2] cycloaddition based on visible light photocatalysis. Nature Communications, 2020, 11, 2509.	12.8	54
9	Divergent reactivity of α-oximino carbenoids: facile access to 2-isoxazolines and 2H-azirines. Chemical Communications, 2011, 47, 7848.	4.1	47
10	The synthesis of pyrroles and oxazoles based on gold $\hat{I}\pm$ -imino carbene complexes. Chemical Communications, 2016, 52, 7336-7339.	4.1	41
11	α-Diazo oxime ethers for N-heterocycle synthesis. Chemical Communications, 2017, 53, 6054-6064.	4.1	35
12	N-AS-triggered SPMs are direct regulators of microglia in a model of Alzheimer's disease. Nature Communications, 2020, 11, 2358.	12.8	31
13	Three omponent Synthesis of Quinolines Based on Radical Cascade Visibleâ€Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 3553-3562.	4.3	27
14	Electrosynthesis of Dihydropyrano[4,3â€ <i>b</i>]indoles Based on a Double Oxidative [3+3] Cycloaddition. Angewandte Chemie - International Edition, 2020, 59, 11886-11891.	13.8	27
15	Synthesis of carbazoles based on gold–copper tandem catalysis. Chemical Communications, 2017, 53, 3481-3484.	4.1	22
16	Carbenoid-mediated N–O bond insertion and its application in the synthesis of pyridines. Chemical Communications, 2012, 48, 11244.	4.1	15
17	A chemical tool for blue light-inducible proximity photo-crosslinking in live cells. Chemical Science, 2022, 13, 955-966.	7.4	14
18	Synthesis of Bicyclic <i>N</i> -Heterocycles via Photoredox Cycloaddition of Imino-Alkynes and Imino-Alkenes. ACS Catalysis, 2021, 11, 13670-13679.	11.2	13

CHEOL-MIN PARK

#	Article	IF	CITATIONS
19	Discovery of a dual-action small molecule that improves neuropathological features of Alzheimer's disease mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
20	Metal-Free Synthesis of Indolopyrans and 2,3-Dihydrofurans Based on Tandem Oxidative Cycloaddition. Organic Letters, 2020, 22, 5528-5534.	4.6	10
21	Programmable site-selective labeling of oligonucleotides based on carbene catalysis. Nature Communications, 2021, 12, 1681.	12.8	9
22	<i>Ortho</i> -selective C–H arylation of phenols with <i>N</i> -carboxyindoles under BrÃ,nsted acid- or Cu(<scp>i</scp>)-catalysis. Chemical Science, 2022, 13, 1169-1176.	7.4	8
23	Rational design of metal–ligands for the conversion of CH ₄ and CO ₂ to acetates: role of acids and Lewis acids. Journal of Materials Chemistry A, 2020, 8, 14671-14679.	10.3	7
24	Electrochemical C(sp ³)–H Functionalization of γ-Lactams Based on Hydrogen Atom Transfer. Organic Letters, 2022, 24, 4264-4269.	4.6	7
25	Electrosynthesis of Dihydropyrano[4,3â€ <i>b</i>]indoles Based on a Double Oxidative [3+3] Cycloaddition. Angewandte Chemie, 2020, 132, 11984-11989.	2.0	4