
Maria Luisa Bondì

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3676030/publications.pdf Version: 2024-02-01

MADIA LIUSA RONDÃ.

#	Article	IF	CITATIONS
1	Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine, 2010, 5, 25-32.	3.3	145
2	Solid lipid nanoparticles for applications in gene therapy: a review of the state of the art. Expert Opinion on Drug Delivery, 2010, 7, 7-18.	5.0	81
3	Nanotechnology applications for the therapy of liver fibrosis. World Journal of Gastroenterology, 2014, 20, 7242.	3.3	74
4	Nanoparticulate Systems for Drug Delivery and Targeting to the Central Nervous System. CNS Neuroscience and Therapeutics, 2011, 17, 670-677.	3.9	69
5	Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Scientific Reports, 2019, 9, 11134.	3.3	68
6	Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. Journal of Drug Targeting, 2007, 15, 295-301.	4.4	67
7	Nanostructured Lipid Carriers-Containing Anticancer Compounds: Preparation, Characterization, and Cytotoxicity Studies. Drug Delivery, 2007, 14, 61-67.	5.7	67
8	Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment. Journal of Agricultural and Food Chemistry, 2017, 65, 1342-1352.	5.2	55
9	Phospholipid–polyaspartamide micelles for pulmonary delivery of corticosteroids. International Journal of Pharmaceutics, 2011, 406, 135-144.	5.2	40
10	Minimalism in Radiation Synthesis of Biomedical Functional Nanogels. Biomacromolecules, 2012, 13, 1805-1817.	5.4	40
11	Novel Composed Galactosylated Nanodevices Containing a Ribavirin Prodrug as Hepatic Cell-Targeted Carriers for HCV Treatment. Journal of Biomedical Nanotechnology, 2013, 9, 1107-1122.	1.1	40
12	Lipid Nanoparticles for Drug Targeting to the Brain. Methods in Enzymology, 2012, 508, 229-251.	1.0	38
13	Supramolecular Assemblies Based on Complexes of Nonionic Amphiphilic Cyclodextrins and a <i>meso</i> -Tetra(4-sulfonatophenyl)porphine Tributyltin(IV) Derivative: Potential Nanotherapeutics against Melanoma. Biomacromolecules, 2013, 14, 3820-3829.	5.4	35
14	Lipid nanocarriers containing sorafenib inhibit colonies formation in human hepatocarcinoma cells. International Journal of Pharmaceutics, 2015, 493, 75-85.	5.2	34
15	Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. International Journal of Pharmaceutics, 2017, 516, 334-341.	5.2	33
16	A Nanoparticulate Drugâ€Delivery System for Rivastigmine: Physicoâ€Chemical and <i>in vitro</i> Biological Characterization. Macromolecular Bioscience, 2008, 8, 247-259.	4.1	32
17	Mucoadhesive solid lipid microparticles for controlled release of a corticosteroid in the chronic obstructive pulmonary disease treatment. Nanomedicine, 2017, 12, 2287-2302.	3.3	31
18	Oligonucleotidesâ€decoratedâ€poly(<i>N</i> â€vinyl pyrrolidone) nanogels for gene delivery. Journal of Applied Polymer Science, 2014, 131, .	2.6	28

2

Maria Luisa Bondì

#	Article	IF	CITATIONS
19	Neo-clerodane diterpenoids from Scutellaria lateriflora. Phytochemistry, 1998, 48, 687-691.	2.9	27
20	An ent-kaurane from Sideritis huber-morathii. Phytochemistry, 1996, 43, 1293-1295.	2.9	25
21	Application of polymeric nanoparticles in immunotherapy. Current Opinion in Allergy and Clinical Immunology, 2012, 12, 658-664.	2.3	25
22	Salmeterol Xinafoate (SX) loaded into mucoadhesive solid lipid microparticles for COPD treatment. International Journal of Pharmaceutics, 2019, 562, 351-358.	5.2	23
23	Preparation of Polymeric Nanoparticles by Photo-Crosslinking of an Acryloylated Polyaspartamide in w/o Microemulsion. Macromolecular Chemistry and Physics, 2004, 205, 1955-1964.	2.2	21
24	Entrapment of an EGFR inhibitor into nanostructured lipid carriers (NLC) improves its antitumor activity against human hepatocarcinoma cells. Journal of Nanobiotechnology, 2014, 12, 21.	9.1	21
25	Neoclerodane Diterpenoids from Scutellaria polyodon. Journal of Natural Products, 1997, 60, 1229-1235.	3.0	20
26	Neoclerodane Diterpenoids fromTeucriummontbretiiSubsp.libanoticumand Their Absolute Configuration. Journal of Natural Products, 2002, 65, 142-146.	3.0	19
27	Nanoparticles based on novel amphiphilic polyaspartamide copolymers. Journal of Nanoparticle Research, 2010, 12, 2629-2644.	1.9	18
28	Evaluation of biodegradability on polyaspartamide-polylactic acid based nanoparticles by chemical hydrolysis studies. Polymer Degradation and Stability, 2015, 119, 56-67.	5.8	18
29	An allergen-polymeric nanoaggregate as a new tool for allergy vaccination. International Journal of Pharmaceutics, 2014, 465, 275-283.	5.2	17