Rashid Nazir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675938/publications.pdf

Version: 2024-02-01

567144 580701 24 774 15 25 citations h-index g-index papers 25 25 25 842 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Fire and mechanical properties of DGEBA-based epoxy resin cured with a cycloaliphatic hardener: Combined action of silica, melamine and DOPO-derivative. Materials and Design, 2020, 193, 108862.	3.3	75
2	Ï∈-Expanded Ketocoumarins as Efficient, Biocompatible Initiators for Two-Photon-Induced Polymerization. Chemistry of Materials, 2014, 26, 3175-3184.	3.2	72
3	Comprehensive study on flame retardant polyesters from phosphorus additives. Polymer Degradation and Stability, 2018, 155, 22-34.	2.7	64
4	Recent developments in P(O/S)–N containing flame retardants. Journal of Applied Polymer Science, 2020, 137, 47910.	1.3	64
5	Gating That Suppresses Charge Recombination–The Role of Mono- <i>N</i> -Arylated Diketopyrrolopyrrole. Journal of the American Chemical Society, 2016, 138, 12826-12832.	6.6	53
6	Donor–Acceptor Type Thioxanthones: Synthesis, Optical Properties, and Two-Photon Induced Polymerization. Macromolecules, 2015, 48, 2466-2472.	2.2	49
7	Push–Pull Acylo-Phosphine Oxides for Two-Photon-Induced Polymerization. Macromolecules, 2013, 46, 7239-7244.	2.2	45
8	Smart hydrogel-microsphere embedded silver nanoparticle catalyst with high activity and selectivity for the reduction of 4-nitrophenol and azo dyes. Journal of Hazardous Materials, 2021, 416, 126237.	6.5	41
9	Vertically π-Expanded Coumarins: The Synthesis and Optical Properties. Journal of Organic Chemistry, 2016, 81, 11104-11114.	1.7	38
10	Strong solvent dependence of linear and non-linear optical properties of donor–acceptor type pyrrolo[3,2-b]pyrroles. Physical Chemistry Chemical Physics, 2015, 17, 23724-23731.	1.3	35
11	In-situ phosphine oxide physical networks: A facile strategy to achieve durable flame retardant and antimicrobial treatments of cellulose. Chemical Engineering Journal, 2021, 417, 128028.	6.6	34
12	High-speed two-photon polymerization 3D printing with a microchip laser at its fundamental wavelength. Optics Express, 2019, 27, 25119.	1.7	34
13	π-Expanded 1,3-diketones – synthesis, optical properties and application in two-photon polymerization. Journal of Materials Chemistry C, 2016, 4, 167-177.	2.7	28
14	Ï€â€Expanded α,βâ€Unsaturated Ketones: Synthesis, Optical Properties, and Twoâ€Photonâ€Induced Polymerization. ChemPhysChem, 2015, 16, 682-690.	1.0	24
15	Michael addition in reactive extrusion: A facile sustainable route to developing phosphorus based flame retardant materials. Composites Part B: Engineering, 2019, 178, 107470.	5.9	22
16	Fabrication of Cellulase Catalysts Immobilized on a Nanoscale Hybrid Polyaniline/Cationic Hydrogel Support for the Highly Efficient Catalytic Conversion of Cellulose. ACS Applied Materials & Emp; Interfaces, 2021, 13, 49816-49827.	4.0	18
17	Stabilizing effects of novel phosphorus flame retardant on PET for high-temperature applications. Materials Letters, 2020, 276, 128225.	1.3	15
18	Alkyl sulfone bridged phosphorus flame-retardants for polypropylene. Materials and Design, 2021, 200, 109459.	3.3	15

#	Article	IF	CITATION
19	Synthesis and Optical Properties of α,βâ€Unsaturated Ketones Bearing a Benzofuran Moiety. Asian Journal of Organic Chemistry, 2015, 4, 929-935.	1.3	12
20	Structurally Tunable pH-responsive Phosphine Oxide Based Gels by Facile Synthesis Strategy. ACS Applied Materials & Strategy. ACS Applied Mate	4.0	9
21	Polyamine–Diazirine Conjugates for Use as Primers in UHMWPE–Epoxy Composite Materials. ACS Applied Polymer Materials, 2022, 4, 1728-1742.	2.0	8
22	Influence of Topical Cross-Linking on Mechanical and Ballistic Performance of a Woven Ultra-High-Molecular-Weight Polyethylene Fabric Used in Soft Body Armor. ACS Applied Polymer Materials, 2021, 3, 6008-6018.	2.0	6
23	Electronically optimized diazirine-based polymer crosslinkers. Polymer Chemistry, 2022, 13, 3833-3839.	1.9	6
24	Synthesis of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Ketosulfone Derivatives As New Non-Cytotoxic Urease Inhibitors $\langle i \rangle$ In Vitro $\langle i \rangle$. Medicinal Chemistry, 2020, 16, 244-255.	0.7	5