
Jose M Porras-Vazquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675520/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs. Journal of Power Sources, 2014, 249, 405-413.	7.8	105
2	Interstitial oxide positions in oxygen-excess oxy-apatites. Solid State Ionics, 2006, 177, 1307-1315.	2.7	83
3	Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State lonics, 2013, 239, 1-7.	2.7	79
4	Round robin on Rietveld quantitative phase analysis of Portland cements. Journal of Applied Crystallography, 2009, 42, 906-916.	4.5	62
5	Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites. Journal of Solid State Chemistry, 2007, 180, 1250-1258.	2.9	61
6	A review on recent advances and trends in symmetrical electrodes for solid oxide cells. Journal of Power Sources, 2022, 520, 230852.	7.8	58
7	Investigation into the effect of Si doping on the performance of SrFeO3â^δSOFC electrode materials. Journal of Materials Chemistry A, 2013, 1, 11834.	10.3	53
8	Perspectives on Cathodes for Protonic Ceramic Fuel Cells. Applied Sciences (Switzerland), 2021, 11, 5363.	2.5	51
9	Synthesis and characterisation of oxyanion-doped manganites for potential application as SOFC cathodes. Journal of Materials Chemistry, 2012, 22, 8287.	6.7	44
10	Ti-doped SrFeO ₃ nanostructured electrodes for symmetric solid oxide fuel cells. RSC Advances, 2015, 5, 107889-107895.	3.6	44
11	Microstructure and Oxide Ion Conductivity in a Dense La _{9.33} (SiO ₄) ₆ O ₂ Oxyâ€Apatite. Journal of the American Ceramic Society, 2009, 92, 1062-1068.	3.8	41
12	Oxyanions in perovskites: from superconductors to solid oxide fuel cells. Dalton Transactions, 2015, 44, 10559-10569.	3.3	39
13	Stability and performance of La0.6Sr0.4Co0.2Fe0.8O3-δ nanostructured cathodes with Ce0.8Gd0.2O1.9 surface coating. Journal of Power Sources, 2017, 347, 178-185.	7.8	38
14	Improving the efficiency of layered perovskite cathodes by microstructural optimization. Journal of Materials Chemistry A, 2017, 5, 7896-7904.	10.3	37
15	Recent progress in nanostructured electrodes for solid oxide fuel cells deposited by spray pyrolysis. Journal of Power Sources, 2021, 507, 230277.	7.8	37
16	Synthesis of oxyanion-doped barium strontium cobalt ferrites: Stabilization of the cubic perovskite and enhancement in conductivity. Journal of Power Sources, 2012, 209, 180-183.	7.8	35
17	Effect of Preparation Conditions on the Polymorphism and Transport Properties of La _{6–<i>x</i>} MoO _{12â~î´} (0 ≤i>x â‰ฃ.8). Chemistry of Materials, 2017, 29, 6966-6975.	6.7	35
18	Low temperature crystal structures of apatite oxygen-conductors containing interstitial oxygen. Dalton Transactions, 2007, , 2058-2064.	3.3	29

#	Article	IF	CITATIONS
19	Synthesis and Characterization of Oxyanionâ€Doped Cobalt Containing Perovskites. Fuel Cells, 2012, 12, 1056-1063.	2.4	28
20	Characterization of LaNi0.6Fe0.4O3 perovskite synthesized by glycine-nitrate combustion method. Solid State Ionics, 2015, 269, 24-29.	2.7	27
21	La1â^'xSrxFe0.7Ni0.3O3â~Î^ as both cathode and anode materials for Solid Oxide Fuel Cells. International Journal of Hydrogen Energy, 2017, 42, 23160-23169.	7.1	25
22	Durability and performance of CGO barriers and LSCF cathode deposited by spray-pyrolysis. Journal of the European Ceramic Society, 2018, 38, 3518-3526.	5.7	24
23	Investigation into the effect of Si doping on the performance of Sr1â^'yCayMnO3â^'δ SOFC cathode materials. Dalton Transactions, 2013, 42, 5421.	3.3	23
24	Investigation into the effect of Si doping on the cell symmetry and performance of Sr1â^'yCayFeO3â^'δ SOFC cathode materials. Journal of Solid State Chemistry, 2014, 213, 132-137.	2.9	22
25	Oxide and proton conductivity in aluminum-doped tricalcium oxy-silicate. Solid State Ionics, 2007, 178, 1073-1080.	2.7	20
26	Preparation of aluminium lanthanum oxyapatite tapes, La10AlSi5O26.5, by tape casting and reaction sintering. Journal of the European Ceramic Society, 2011, 31, 1573-1580.	5.7	20
27	Highly efficient La0.8Sr0.2MnO3-δ- Ce0.9Gd0.1O1.95 nanocomposite cathodes for solid oxide fuel cells. Ceramics International, 2018, 44, 4961-4966.	4.8	20
28	Pectin-cellulose nanocrystal biocomposites: Tuning of physical properties and biodegradability. International Journal of Biological Macromolecules, 2021, 180, 709-717.	7.5	20
29	LaNi0.6Co0 4O3â^' dip-coated on Fe–Cr mesh as a composite cathode contact material on intermediate solid oxide fuel cells. Journal of Power Sources, 2014, 269, 509-519.	7.8	19
30	Evaluation of using protective/conductive coating on Fe-22Cr mesh as a composite cathode contact material for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40, 4804-4818.	7.1	19
31	Doping effects on the structure and electrical properties of La2Ce2O7 proton conductors. Journal of Alloys and Compounds, 2020, 816, 152600.	5.5	19
32	Evaluation of lanthanum tungstates as electrolytes for proton conductors Solid Oxide Fuel Cells. Journal of Power Sources, 2015, 294, 483-493.	7.8	18
33	LSCF-CGO nanocomposite cathodes deposited in a single step by spray-pyrolysis. Journal of the European Ceramic Society, 2018, 38, 1647-1653.	5.7	18
34	Relationship between the Structure and Transport Properties in the Ce _{1–<i>x</i>} La _{<i>x</i>} O _{2–<i>x</i>/2} System. Inorganic Chemistry, 2019, 58, 9368-9377.	4.0	17
35	Structure and oxide anion conductivity in Ln2(TO4)O (Ln=La, Nd; T=Ge, Si). Journal of Solid State Chemistry, 2008, 181, 2501-2506.	2.9	16
36	An easy and innovative method based on spray-pyrolysis deposition to obtain high efficiency cathodes for Solid Oxide Fuel Cells. Journal of Power Sources, 2016, 319, 48-55.	7.8	16

#	Article	IF	CITATIONS
37	Influence of the synthesis method on the structure and electrical properties of Sr1â^'K GeO3â^'/2. Ceramics International, 2015, 41, 6542-6551.	4.8	15
38	Stability and electrochemical performance of nanostructured La2CuO4+δ cathodes. Journal of Alloys and Compounds, 2019, 788, 565-572.	5.5	15
39	Effect of Zn addition on the structure and electrochemical properties of co-doped BaCe0.6Zr0.2Ln0.2O3-δ (Ln=Y, Gd, Yb) proton conductors. Ceramics International, 2018, 44, 14113-14121.	4.8	14
40	Effect of tri- and tetravalent metal doping on the electrochemical properties of lanthanum tungstate proton conductors. Dalton Transactions, 2016, 45, 3130-3138.	3.3	13
41	Colloidal Processing and Characterization of Aluminum-Doped Lanthanum Oxyapatite, La10AlSi5O26.5. Journal of the American Ceramic Society, 2011, 94, 117-123.	3.8	12
42	Single step reactive sintering and chemical compatibility between La9Sr1Si6O26.5 and selected cathode materials. Ceramics International, 2012, 38, 3327-3335.	4.8	12
43	Laser machining of LaNi0.6M0.4O3â^'δ (M: Co, Fe) dip-coated on a Fe–22Cr mesh material to obtain aÂnew contact coating for SOFC: Interaction between Crofer22APU interconnect and La0.6Sr0.4FeO3 cathode. International Journal of Hydrogen Energy, 2015, 40, 8407-8418.	7.1	12
44	Highly oriented and fully dense CGO films prepared by spray-pyrolysis and different precursor salts. Journal of the European Ceramic Society, 2020, 40, 3080-3088.	5.7	12
45	Synthesis and Characterization of a New Family of Mixed Oxideâ^'Proton Conductors Based on Tristrontium Oxysilicate. Chemistry of Materials, 2008, 20, 2026-2034.	6.7	11
46	Metal-Doping of La _{5.4} MoO _{11.1} Proton Conductors: Impact on the Structure and Electrical Properties. Inorganic Chemistry, 2018, 57, 12811-12819.	4.0	10
47	Nanostructured BaCo0.4Fe0.4Zr0.1Y0.1O3-δCathodes with Different Microstructural Architectures. Nanomaterials, 2020, 10, 1055.	4.1	10
48	Efficient symmetrical electrodes based on LaCrO3 via microstructural engineering. Journal of the European Ceramic Society, 2022, 42, 181-192.	5.7	10
49	Oxy-apatite reaction sintering of colloidal and classic ceramic processed powders. Ceramics International, 2012, 38, 1851-1858.	4.8	9
50	Investigation of PO43â^' oxyanion-doping on the properties of CaFe0.4Ti0.6O3â^'î´ for potential application as symmetrical electrodes for SOFCs. Journal of Alloys and Compounds, 2020, 835, 155437.	5.5	9
51	A new family of oxide ion conductors based on tricalcium oxy-silicate. Dalton Transactions, 2006, , 2691-2697.	3.3	8
52	A novel multilaminated composite cathode for solid oxide fuel cells. Ceramics International, 2019, 45, 18124-18127.	4.8	8
53	Synergic Effect of Metal and Fluorine Doping on the Structural and Electrical Properties of La _{5.4} MoO _{11.1} -Based Materials. Inorganic Chemistry, 2020, 59, 1444-1452.	4.0	7
54	Unravelling Crystal Superstructures and Transformations in the La6–xMoO12â^'Î′ (0.6 ≤ ≤3.0) Series: A System with Tailored Ionic/Electronic Conductivity. Chemistry of Materials, 2020, 32, 7052-7062.	6.7	7

#	Article	IF	CITATIONS
55	Influence of Bi1.5Y0.5O3 Active Layer on the Performance of Nanostructured La0.8Sr0.2MnO3 Cathode. Applied Nano, 2020, 1, 14-24.	2.0	7
56	LaCrO ₃ –CeO ₂ -Based Nanocomposite Electrodes for Efficient Symmetrical Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2022, 5, 4536-4546.	5.1	7
57	Synthesis and characterization of novel Ge doped Sr 1â~'y Ca y FeO 3â~'δ SOFC cathode materials. Materials Research Bulletin, 2015, 67, 63-69.	5.2	6
58	Synthesis of catalysts by pyrolysis of Cu-chitosan complexes and their evaluation in the hydrogenation of furfural to value-added products. Molecular Catalysis, 2021, 512, 111774.	2.0	4
59	Modification of the Microstructure and Transport Properties of La2CuO4â^δElectrodes via Halogenation Routes. Processes, 2022, 10, 1206.	2.8	4
60	Colloidal processing and characterisation of lanthanum tungstate sheets, La5.5WO11.25, prepared by tape casting and reaction sintering. Ceramics International, 2015, 41, 11334-11340.	4.8	3
61	Crystallochemistry and electrical properties of Al-doped Sr2SiO4 electrolytes. Ceramics International, 2016, 42, 16317-16324.	4.8	3
62	Tunable Electrode Architectures for La0.8Sr0.2Fe1-XTixO3- δBased Symmetrical Solid Oxide Fuel Cells. ECS Transactions, 2021, 103, 1601-1606.	0.5	0