Olga P Tkachenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675475/publications.pdf

Version: 2024-02-01

623734 610901 30 590 14 24 g-index citations h-index papers 30 30 30 961 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Advances in C5 and C6 Sugar Alcohol Synthesis by Hydrogenation of Monosaccharides and Cellulose Hydrolytic Hydrogenation over Non-Noble Metal Catalysts. Molecules, 2022, 27, 1353.	3.8	16
2	Modifying HKUST-1 Crystals for Selective Ethane Adsorption Using Ionic Liquids as Synthesis Media. Crystals, 2022, 12, 279.	2.2	5
3	Understanding the Working Mechanism of the Novel HKUST-1@BPS Composite Materials as Stationary Phases for Liquid Chromatography. Polymers, 2022, 14, 1373.	4.5	3
4	Advanced Room-Temperature Synthesis of 2,5-Bis(hydroxymethyl)furanâ€"A Monomer for Biopolymersâ€"from 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2021, 9, 1161-1171.	6.7	29
5	Ethanol to Acetaldehyde Conversion under Thermal and Microwave Heating of ZnO-CuO-SiO2 Modified with WC Nanoparticles. Molecules, 2021, 26, 1955.	3.8	3
6	Preparation of Propanols by Glycerol Hydrogenolysis over Bifunctional Nickel-Containing Catalysts. Molecules, 2021, 26, 1565.	3.8	6
7	Influence of the electronic state of the metals in Cu–Pt/SiO 2 catalysts on the catalytic properties in selective hydrogenation of the C≡C bond. Journal of Chemical Technology and Biotechnology, 2021, 96, 3436.	3.2	1
8	Effect of ultra-low amount of gold in oxide-supported bimetallic Au–Fe and Au–Cu catalysts on liquid-phase aerobic glycerol oxidation in water. Catalysis Science and Technology, 2021, 11, 5881-5897.	4.1	3
9	Hydroamination of Phenylacetylene with Aniline over Gold Nanoparticles Embedded in the Boron Imidazolate Framework BIF-66 and Zeolitic Imidazolate Framework ZIF-67. ACS Applied Materials & https://www.lnterfaces, 2021, 13, 59803-59819.	8.0	5
10	Glucose Oxidase Immobilized on Magnetic Zirconia: Controlling Catalytic Performance and Stability. ACS Omega, 2020, 5, 12329-12338.	3.5	10
11	Hydrodeoxygenation of glycerol into propanols over a Ni/WO3–TiO2 catalyst. Mendeleev Communications, 2020, 30, 119-120.	1.6	6
12	Mono and Bimetallic Pt–(M)/Al2O3 Catalysts for Dehydrogenation of Perhydro-N-ethylcarbazole as the Second Stage of Hydrogen Storage. Catalysis Letters, 2018, 148, 1472-1477.	2.6	9
13	The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2–CuCl2/γ-Al2O3 Nanocatalyst. Nanomaterials, 2018, 8, 217.	4.1	10
14	Immobilized glucose oxidase on magnetic silica and alumina: Beyond magnetic separation. International Journal of Biological Macromolecules, 2018, 120, 896-905.	7.5	27
15	Reactive Adsorption of Sulfur Compounds on Transition Metal Polycationâ€Exchanged Zeolites for Desulfurization of Hydrocarbon Streams. Energy Technology, 2017, 5, 1627-1637.	3.8	3
16	Metal-Ion Distribution and Oxygen Vacancies That Determine the Activity of Magnetically Recoverable Catalysts in Methanol Synthesis. ACS Applied Materials & Interfaces, 2017, 9, 34005-34014.	8.0	16
17	Nickel–Alumina Catalysts in the Reaction of Carbon Dioxide Re-Forming of Methane under Thermal and Microwave Heating. Industrial & Dioxide Research, 2017, 56, 13034-13039.	3.7	14
18	Nanoshaped CuO/CeO ₂ Materials: Effect of the Exposed Ceria Surfaces on Catalytic Activity in N ₂ O Decomposition Reaction. ACS Catalysis, 2015, 5, 5357-5365.	11,2	181

#	Article	IF	CITATION
19	Low-temperature CO oxidation by transition metal polycation exchanged low-silica faujasites. Applied Catalysis B: Environmental, 2015, 179, 521-529.	20.2	16
20	Au/Pt/TiO2 catalysts prepared by redox method for the chemoselective 1,2-propanediol oxidation to lactic acid and an NMR spectroscopy approach for analyzing the product mixture. Applied Catalysis A: General, 2015, 491, 170-183.	4.3	35
21	Novel Fe-Pd/SiO2 catalytic materials for degradation of chlorinated organic compounds in water. Pure and Applied Chemistry, 2014, 86, 1141-1158.	1.9	18
22	Evidence of the Formation of Surface Palladium Carbide during the Catalytic Combustion of Lean Methane/Air Mixtures. Energy Technology, 2014, 2, 243-249.	3.8	12
23	Oxidation of Carbon Monoxide over MLaO _{<i>x</i>>} Perovskites Supported on Mesoporous Zirconia. ChemCatChem, 2014, 6, 1990-1997.	3.7	12
24	Metal–supported catalysts encapsulated in mesoporous solids: Challenges and opportunities of a model concept. Physica Status Solidi (B): Basic Research, 2013, 250, 1081-1093.	1.5	8
25	1,3-Butadiene Adsorption over Transition Metal Polycation Exchanged Faujasites. Industrial & mp; Engineering Chemistry Research, 2012, 51, 7073-7080.	3.7	14
26	DRIFT, XPS and XAS Investigation of Au–Ni/Al2O3 Synergetic Catalyst for Allylbenzene Isomerization. Topics in Catalysis, 2009, 52, 344-350.	2.8	30
27	An easy way to Pd–Zn nanoalloy with defined composition from a heterobimetallic Pd(Î⅓–OOCMe)4Zn(OH2) complex as evidenced by XAFS and XRD. Catalysis Letters, 2006, 112, 155-161.	2.6	51
28	Methodical aspects in the surface analysis of supported molybdena catalysts. Surface and Interface Analysis, 2004, 36, 238-245.	1.8	22
29	Characterization of silica-gel supported Pt–Cu alloy particles prepared via the sol–gel technique. Physical Chemistry Chemical Physics, 2000, 2, 2667-2672.	2.8	9
30	Stable subnanometre Pt clusters in zeolite NaX via stoichiometric carbonyl complexes: Probing of negative charge by DRIFT spectroscopy of adsorbed CO and H2. Physical Chemistry Chemical Physics, 2000, 2, 5647-5652.	2.8	16