
Renli Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675412/publications.pdf Version: 2024-02-01

RENILLIANC

#	Article	IF	CITATIONS
1	Ultrahigh Degree of Optical Polarization above 80% in AlGaN-Based Deep-Ultraviolet LED with Moth-Eye Microstructure. ACS Photonics, 2018, 5, 3534-3540.	6.6	50
2	Fabrication of Microlens Arrays with Controlled Curvature by Micromolding Water Condensing Based Porous Films for Deep Ultraviolet LEDs. ACS Photonics, 2017, 4, 2479-2485.	6.6	46
3	High Light Extraction Efficiency of Deep Ultraviolet LEDs Enhanced Using Nanolens Arrays. IEEE Transactions on Electron Devices, 2018, 65, 2498-2503.	3.0	43
4	Enhanced Optical and Thermal Performance of Eutectic Flip-Chip Ultraviolet Light-Emitting Diodes via AlN-Doped-Silicone Encapsulant. IEEE Transactions on Electron Devices, 2017, 64, 467-471.	3.0	33
5	Progress and Perspective of Near-Ultraviolet and Deep-Ultraviolet Light-Emitting Diode Packaging Technologies. Journal of Electronic Packaging, Transactions of the ASME, 2019, 141, .	1.8	32
6	Enhanced Light Extraction From DUV-LEDs by AlN-Doped Fluoropolymer Encapsulation. IEEE Photonics Technology Letters, 2017, 29, 1151-1154.	2.5	31
7	Investigation on Thermal Characterization of Eutectic Flip-Chip UV-LEDs With Different Bonding Voidage. IEEE Transactions on Electron Devices, 2017, 64, 1174-1179.	3.0	26
8	Enhanced Performance of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes with Chirped Superlattice Electron Deceleration Layer. Nanoscale Research Letters, 2019, 14, 347.	5.7	22
9	Improvement of Interface Thermal Resistance for Surface-Mounted Ultraviolet Light-Emitting Diodes Using a Graphene Oxide Silicone Composite. ACS Omega, 2017, 2, 5005-5011.	3.5	20
10	Enhanced Wall-Plug Efficiency in AlGaN-Based Deep-Ultraviolet LED via a Novel Honeycomb Hole-Shaped Structure. IEEE Transactions on Electron Devices, 2019, 66, 2997-3002.	3.0	20
11	Fast growth of high quality AlN films on sapphire using a dislocation filtering layer for ultraviolet light-emitting diodes. CrystEngComm, 2019, 21, 4072-4078.	2.6	18
12	Enhanced light extraction of deep ultraviolet light-emitting diodes by using optimized aluminum reflector. Applied Optics, 2018, 57, 7325.	1.8	17
13	Interface Anchored Effect on Improving Working Stability of Deep Ultraviolet Light-Emitting Diode Using Graphene Oxide-Based Fluoropolymer Encapsulant. ACS Applied Materials & Interfaces, 2018, 10, 8238-8244.	8.0	16
14	Bio-Inspired Flexible Fluoropolymer Film for All-Mode Light Extraction Enhancement. ACS Applied Materials & Interfaces, 2019, 11, 19623-19630.	8.0	16
15	AlN gradient interlayer design for the growth of high-quality AlN epitaxial film on sputtered AlN/sapphire substrate. CrystEngComm, 2018, 20, 6557-6564.	2.6	15
16	Enhanced Optical Performance of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes by Electrode Patterns Design. IEEE Electron Device Letters, 2019, 40, 1925-1928.	3.9	14
17	Phosphor Glass-Coated Sapphire With Moth-Eye Microstructures for Ultraviolet-Excited White Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2019, 66, 3007-3011.	3.0	13
18	Enhanced light extraction efficiency via double nano-pattern arrays for high-efficiency deep UV LEDs. Optics and Laser Technology, 2021, 143, 107360.	4.6	12

Renli Liang

#	Article	IF	CITATIONS
19	Experimental Study on the Effects of Eutectic Voids on the Thermal Performance Within Flip-Chip Ultraviolet Light-Emitting Diodes. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1488-1492.	2.5	9
20	Reduction of Structural Thermal Resistance for Deep Ultraviolet Light-Emitting Diodes Fabricated on AlN Ceramic Substrate via Copper- Filled Thermal Holes. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 2107-2112.	2.5	8
21	Full wafer scale electroluminescence properties of AlGaN-based deep ultraviolet LEDs with different well widths. Optics Letters, 2021, 46, 2111.	3.3	3
22	Thermal investigation of high-power UV-LEDs using graphene oxide silicone encapsulant. , 2017, , .		0
23	AlGaN-based thin-film ultraviolet laser diodes and light-emitting diodes. Semiconductors and Semimetals, 2021, 107, 345-391.	0.7	0