List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3675155/publications.pdf Version: 2024-02-01

ROUANC

#	Article	IF	CITATIONS
1	A flexible image processing technique for measuring bubble parameters based on a neural network. Chemical Engineering Journal, 2022, 429, 132138.	6.6	15
2	A high temperature tubular reactor with hybrid concentrated solar and electric heat supply for steam methane reforming. Chemical Engineering Journal, 2022, 428, 132073.	6.6	29
3	Boosting power density of photocatalytic fuel cells with integrated supercapacitive photoanode. Chemosphere, 2022, 286, 131657.	4.2	2
4	Investigation on multifunctional Au/TiO2@n-octadecane microcapsules towards catalytic photoreforming hydrogen production and photothermal conversion. International Journal of Hydrogen Energy, 2022, 47, 41540-41552.	3.8	10
5	Bioinspired hierarchical evaporator via cell wall engineering for highly efficient and sustainable solar desalination. EcoMat, 2022, 4, .	6.8	24
6	Defect-engineered MXene monolith enabling interfacial photothermal catalysis for high-yield solar hydrogen generation. Cell Reports Physical Science, 2022, 3, 100877.	2.8	8
7	A compact and high-efficiency electrified reactor for hydrogen production by methane steam reforming. International Journal of Hydrogen Energy, 2022, 47, 41421-41431.	3.8	7
8	Oxygen Activity Tuning via FeO ₆ Octahedral Tilting in Perovskite Ferrites for Chemical Looping Dry Reforming of Methane. ACS Catalysis, 2022, 12, 7326-7335.	5.5	27
9	Data-driven approach to predict the flow boiling heat transfer coefficient of liquid hydrogen aviation fuel. Fuel, 2022, 324, 124778.	3.4	14
10	Deciphering high-efficiency solar-thermochemical energy conversion process of heat pipe reactor for steam methane reforming. Fuel, 2022, 326, 124972.	3.4	9
11	Iron–oxygen covalency in perovskites to dominate syngas yield in chemical looping partial oxidation. Journal of Materials Chemistry A, 2021, 9, 13008-13018.	5.2	43
12	Simulation study on the performance of low-temperature water gas shift membrane reactor system. International Journal of Hydrogen Energy, 2021, 46, 15595-15608.	3.8	5
13	CFD simulation on hydrogen-membrane reactor integrating cyclohexane dehydrogenation and CO2 methanation reactions: A conceptual study. Energy Conversion and Management, 2021, 235, 113989.	4.4	15
14	Highly Saltâ€Resistant 3D Hydrogel Evaporator for Continuous Solar Desalination via Localized Crystallization. Advanced Functional Materials, 2021, 31, 2104380.	7.8	122
15	A CFD study on H2-permeable membrane reactor for methane CO2 reforming: Effect of catalyst bed volume. International Journal of Hydrogen Energy, 2021, 46, 38336-38350.	3.8	3
16	Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: Effect of calcination temperature. International Journal of Hydrogen Energy, 2021, 46, 31041-31053.	3.8	82
17	Programmed design of selectively-functionalized wood aerogel: Affordable and mildew-resistant solar-driven evaporator. Nano Energy, 2021, 87, 106146.	8.2	77
18	Multifunctional Ni-based oxygen carrier for H2 production by sorption enhanced chemical looping reforming of ethanol. Fuel Processing Technology, 2021, 221, 106953.	3.7	15

#	Article	IF	CITATIONS
19	Cu/SiO2 derived from copper phyllosilicate for low-temperature water-gas shift reaction: Role of Cu+ sites. International Journal of Hydrogen Energy, 2020, 45, 27078-27088.	3.8	23
20	A review on perovskite catalysts for reforming of methane to hydrogen production. Renewable and Sustainable Energy Reviews, 2020, 134, 110291.	8.2	114
21	CFD Simulation of a Hydrogen-Permeable Membrane Reactor for CO ₂ Reforming of CH ₄ : The Interplay of the Reaction and Hydrogen Permeation. Energy & Fuels, 2020, 34, 12366-12378.	2.5	29
22	Flexible and Mildew-Resistant Wood-Derived Aerogel for Stable and Efficient Solar Desalination. ACS Applied Materials & Interfaces, 2020, 12, 28179-28187.	4.0	114
23	Highly Thermally Insulated and Superhydrophilic Corn Straw for Efficient Solar Vapor Generation. ACS Applied Materials & Interfaces, 2020, 12, 16503-16511.	4.0	108
24	Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China. Energy Policy, 2020, 139, 111319.	4.2	32
25	Chemical Looping Reforming of Glycerol for Continuous H2 Production by Moving-Bed Reactors: Simulation and Experiment. Energy & Fuels, 2020, 34, 1841-1850.	2.5	13
26	Hydrogen production from the thermochemical conversion of biomass: issues and challenges. Sustainable Energy and Fuels, 2019, 3, 314-342.	2.5	224
27	Optimization of electricity generation and interprovincial trading strategies in Southern China. Energy, 2019, 174, 696-707.	4.5	29
28	Hydrogen sorption and desorption behaviors of Mg-Ni-Cu doped carbon nanotubes at high temperature. Energy, 2019, 167, 1097-1106.	4.5	36
29	Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts. Energy, 2018, 149, 937-943.	4.5	72
30	Dual-film optofluidic microreactor with enhanced light-harvesting for photocatalytic applications. Chemical Engineering Journal, 2018, 339, 71-77.	6.6	39
31	Hydrogen generation by acetic acid steam reforming over Ni-based catalysts derived from La1â^'xCexNiO3 perovskite. International Journal of Hydrogen Energy, 2018, 43, 6795-6803.	3.8	34
32	Hydrogen production by sorption-enhanced chemical looping steam reforming of ethanol in an alternating fixed-bed reactor: Sorbent to catalyst ratio dependencies. Energy Conversion and Management, 2018, 155, 243-252.	4.4	141
33	Alkaline treatment of used carbon-brush anodes for restoring power generation of microbial fuel cells. RSC Advances, 2018, 8, 36754-36760.	1.7	5
34	Hydrogen Production from Chemical Looping Steam Reforming of Ethanol over Perovskite-Type Oxygen Carriers with Bimetallic Co and Ni B-Site Substitution. Catalysts, 2018, 8, 372.	1.6	9
35	Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers. Fuel, 2018, 222, 185-192.	3.4	74
36	Sintering resistant Ni nanoparticles exclusively confined within SiO ₂ nanotubes for CH ₄ dry reforming. Catalysis Science and Technology, 2018, 8, 3363-3371.	2.1	71

#	Article	IF	CITATIONS
37	Chemical looping glycerol reforming for hydrogen production by Ni@ZrO2 nanocomposite oxygen carriers. International Journal of Hydrogen Energy, 2018, 43, 13200-13211.	3.8	40
38	Hydrogen Production from Chemical Looping Reforming of Ethanol Using Ni/CeO2 Nanorod Oxygen Carrier. Catalysts, 2018, 8, 257.	1.6	23
39	High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming. Journal of CO2 Utilization, 2018, 27, 238-246.	3.3	122
40	A novel oxygen carrier for chemical looping reforming: LaNiO 3 perovskite supported on montmorillonite. Energy, 2017, 131, 58-66.	4.5	49
41	Sorption enhanced steam reforming of biodiesel by-product glycerol on Ni-CaO-MMT multifunctional catalysts. Chemical Engineering Journal, 2017, 313, 207-216.	6.6	53
42	Hydrogen production and reduction of Ni-based oxygen carriers during chemical looping steam reforming of ethanol in a fixed-bed reactor. International Journal of Hydrogen Energy, 2017, 42, 26217-26230.	3.8	121
43	Hydrogen by chemical looping reforming of ethanol: The effect of promoters on La2-MNiO4- (M= Ca, Sr) Tj ETQq1	10.7843 1.9	14 rgBT /O
44	High purity hydrogen production from sorption enhanced chemical looping glycerol reforming: Application of NiO-based oxygen transfer materials and potassium promoted Li2ZrO3 as CO2 sorbent. Applied Thermal Engineering, 2017, 124, 454-465.	3.0	36
45	An intelligent oxygen carrier of Laâ``Sr NiOâ`` for hydrogen production by chemical looping reforming of ethanol. International Journal of Hydrogen Energy, 2017, 42, 17102-17111.	3.8	23
46	Hydrogen production by chemical looping steam reforming of ethanol using NiO/montmorillonite oxygen carriers in a fixed-bed reactor. Chemical Engineering Journal, 2016, 298, 96-106.	6.6	55
47	Effect of support on hydrogen production from chemical looping steam reforming of ethanol over Ni-based oxygen carriers. International Journal of Hydrogen Energy, 2016, 41, 17334-17347.	3.8	62
48	Highly dispersed Ni/montmorillonite catalyst for glycerol steam reforming: Effect of Ni loading and calcination temperature. Applied Thermal Engineering, 2016, 109, 99-108.	3.0	44
49	Hydrogen production from chemical looping steam reforming of glycerol by Ni based Al-MCM-41 oxygen carriers in a fixed-bed reactor. Fuel, 2016, 183, 170-176.	3.4	48
50	Renewable hydrogen production from chemical looping steam reforming of ethanol using xCeNi/SBA-15 oxygen carriers in a fixed-bed reactor. International Journal of Hydrogen Energy, 2016, 41, 12899-12909.	3.8	55
51	Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic. International Journal of Hydrogen Energy, 2016, 41, 3803-3810.	3.8	65
52	Enhanced hydrogen production by sorption-enhanced steam reforming from glycerol with in-situ CO 2 removal in a fixed-bed reactor. Fuel, 2016, 166, 340-346.	3.4	60
53	Solid sorbents for in-situ CO 2 removal during sorption-enhanced steam reforming process: A review. Renewable and Sustainable Energy Reviews, 2016, 53, 536-546.	8.2	171
54	TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge. Bioresource Technology, 2015, 192, 1-10.	4.8	117

#	Article	IF	CITATIONS
55	Pyrolysis of oil-plant wastes in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and products characterization. Bioresource Technology, 2015, 192, 592-602.	4.8	57
56	Hydrogen production from chemical looping steam reforming of glycerol by Ni-based oxygen carrier in a fixed-bed reactor. Chemical Engineering Journal, 2015, 280, 459-467.	6.6	86
57	Sorption-enhanced steam reforming of glycerol on Ni-based multifunctional catalysts. International Journal of Hydrogen Energy, 2015, 40, 7037-7044.	3.8	71
58	Sorption-Enhanced Steam Reforming of Glycerol for Hydrogen Production over a NiO/NiAl ₂ O ₄ Catalyst and Li ₂ ZrO ₃ -Based Sorbent. Energy & Fuels, 2015, 29, 7408-7418.	2.5	39
59	A CFD study on the performance of CO2 methanation in water-permeable membrane reactor system. Reaction Chemistry and Engineering, 0, , .	1.9	4