Robert J Devita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3674902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibitors of cullin-RING E3 ubiquitin ligase 4 with antitumor potential. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
2	DYRK1A Inhibitors as Potential Therapeutics for β-Cell Regeneration for Diabetes. Journal of Medicinal Chemistry, 2021, 64, 2901-2922.	6.4	38
3	Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metabolism, 2021, 33, 1358-1371.e5.	16.2	49
4	Human Beta Cell Regenerative Drug Therapy for Diabetes: Past Achievements and Future Challenges. Frontiers in Endocrinology, 2021, 12, 671946.	3.5	24
5	IUPAC-Richter Prize Call for Nominations. Journal of Medicinal Chemistry, 2021, 64, 13937-13937.	6.4	0
6	Small-molecule antagonism of the interaction of the RAGE cytoplasmic domain with DIAPH1 reduces diabetic complications in mice. Science Translational Medicine, 2021, 13, eabf7084.	12.4	28
7	DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo. Human Molecular Genetics, 2020, 29, 1168-1179.	2.9	21
8	Deletion of 2â€aminoadipic semialdehyde synthase limits metabolite accumulation in cell and mouse models for glutaric aciduria type 1. Journal of Inherited Metabolic Disease, 2020, 43, 1154-1164.	3.6	17
9	Inhibition and Crystal Structure of the Human DHTKD1-Thiamin Diphosphate Complex. ACS Chemical Biology, 2020, 15, 2041-2047.	3.4	14
10	GLP-1 receptor agonists synergize with DYRK1A inhibitors to potentiate functional human \hat{I}^2 cell regeneration. Science Translational Medicine, 2020, 12, .	12.4	81
11	Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 2986-3003.	6.4	36
12	Structure–Activity Relationships and Biological Evaluation of 7-Substituted Harmine Analogs for Human β-Cell Proliferation. Molecules, 2020, 25, 1983.	3.8	13
13	Pharmacologic and genetic approaches define human pancreatic β cell mitogenic targets of DYRK1A inhibitors. JCl Insight, 2020, 5, .	5.0	35
14	Identification of CNS-Penetrant Aryl Sulfonamides as Isoform-Selective Na _V 1.6 Inhibitors with Efficacy in Mouse Models of Epilepsy. Journal of Medicinal Chemistry, 2019, 62, 9618-9641.	6.4	21
15	Development of indazole mineralocorticoid receptor antagonists and investigation into their selective late-stage functionalization. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1854-1858.	2.2	5
16	Encounter and React: Computer-Guided Design of Covalent Inhibitors. Cell Chemical Biology, 2019, 26, 6-8.	5.2	14
17	Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs. Stem Cell Reports, 2018, 10, 1610-1624.	4.8	43
18	Broad Spectrum Inhibitor of Influenza A and B Viruses Targeting the Viral Nucleoprotein. ACS Infectious Diseases, 2018, 4, 146-157.	3.8	19

Robert J Devita

#	Article	IF	CITATIONS
19	Development of Kinase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human β-Cell Proliferation. Journal of Medicinal Chemistry, 2018, 61, 7687-7699.	6.4	58
20	Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic β-cell proliferation activity. European Journal of Medicinal Chemistry, 2018, 157, 1005-1016.	5.5	36
21	Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)pyridinyl-1 <i>H</i> -benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 3594-3605.	6.4	65
22	Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure. Nature Communications, 2015, 6, 7229.	12.8	102
23	Identification and Characterization of Sebaceous Gland Atrophy-Sparing DGAT1 Inhibitors. PLoS ONE, 2014, 9, e88908.	2.5	9
24	Discovery of a Potent and Selective DGAT1 Inhibitor with a Piperidinyl-oxy-cyclohexanecarboxylic Acid Moiety. ACS Medicinal Chemistry Letters, 2014, 5, 1082-1087.	2.8	21
25	Discovery of MK-4409, a Novel Oxazole FAAH Inhibitor for the Treatment of Inflammatory and Neuropathic Pain. ACS Medicinal Chemistry Letters, 2014, 5, 717-721.	2.8	34
26	2-[(3a <i>R</i> ,4 <i>R</i> ,5 <i>S</i> ,7a <i>S</i>)-5-{(1 <i>S</i>)-1-[3,5-Bis(trifluoromethyl)phenyl]-2-hydroxyetho A Potent Human NK ₁ Receptor Antagonist with Multiple Clearance Pathways. Journal of Medicinal Chemistry, 2013, 56, 5940-5948.	xy}-4-(2-m 6.4	ethylphenyl)o 11
27	Current Status of the Research and Development of Diacylglycerol <i>O</i> -Acyltransferase 1 (DGAT1) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 9820-9825.	6.4	90
28	Discovery of MK-3168: A PET Tracer for Imaging Brain Fatty Acid Amide Hydrolase. ACS Medicinal Chemistry Letters, 2013, 4, 509-513.	2.8	31
29	Potent DGAT1 Inhibitors in the Benzimidazole Class with a Pyridyl-oxy-cyclohexanecarboxylic Acid Moiety. ACS Medicinal Chemistry Letters, 2013, 4, 773-778.	2.8	11
30	Synthesis of oxaspiropiperidines as a strategy for lowering logD. Tetrahedron Letters, 2011, 52, 6457-6459.	1.4	4
31	The use of stable-isotopically labeled oleic acid to interrogate lipid assembly in vivo: assessing pharmacological effects in preclinical species. Journal of Lipid Research, 2011, 52, 1150-1161.	4.2	34
32	Tetrahydroindolizinone NK1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2354-2358.	2.2	6
33	Substituted fused bicyclic pyrrolizinones as potent, orally bioavailable hNK1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2007-2012.	2.2	10
34	Fused tricyclic pyrrolizinones that exhibit pseudo-irreversible blockade of the NK1 receptor. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5925-5932.	2.2	19
35	Spiroimidazolidinone NPC1L1 inhibitors. Part 2: Structure–activity studies and in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6929-6932.	2.2	16
36	Spiroimidazolidinone NPC1L1 inhibitors. 1: Discovery by 3D-similarity-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2965-2968.	2.2	16

ROBERT J DEVITA

#	Article	IF	CITATIONS
37	Multiple strategies for the preparation of a sulfur-35 labeled NPC1L1 radioligand. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5033-5036.	2.2	6
38	Potent, Brain-Penetrant, Hydroisoindoline-Based Human Neurokinin-1 Receptor Antagonists. Journal of Medicinal Chemistry, 2009, 52, 3039-3046.	6.4	21
39	Fused bicyclic pyrrolizinones as new scaffolds for human NK1 antagonists. Bioorganic and Medicinal Chemistry, 2008, 16, 2156-2170.	3.0	23
40	Aminoquinoline Melanin-Concentrating Hormone 1-Receptor (MCH1-R) Antagonists. Current Topics in Medicinal Chemistry, 2007, 7, 1433-1439.	2.1	9
41	The discovery of potent, selective, and orally bioavailable hNK1 antagonists derived from pyrrolidine. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5191-5198.	2.2	13
42	Pyrrolidine-carboxamides and oxadiazoles as potent hNK1 antagonists. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5310-5315.	2.2	20
43	2-Aminoquinoline melanin-concentrating hormone (MCH)1R antagonists. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5270-5274.	2.2	32
44	4-Aminoquinoline melanin-concentrating hormone 1-receptor (MCH1R) antagonists. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5275-5279.	2.2	14
45	Identification of neutral 4-O-alkyl quinolone nonpeptide GnRH receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5599-5603.	2.2	9
46	Syntheses and structure–activity relationship studies of piperidine-substituted quinolones as nonpeptide gonadotropin releasing hormone antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1795-1798.	2.2	22
47	Synthesis of 4-Trifluoromethylated 2-Alkyl- and 2,3-Dialkyl-Substituted Azetidines. Organic Letters, 2003, 5, 4101-4103.	4.6	39
48	A Potent, Nonpeptidyl 1H-Quinolone Antagonist for the Gonadotropin-Releasing Hormone Receptor. Journal of Medicinal Chemistry, 2001, 44, 917-922.	6.4	48
49	Potent antagonists of gonadotropin releasing hormone receptors derived from quinolone-6-carboxamides. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 443-447.	2.2	51
50	Quinolones as gonadotropin releasing hormone (GnRH) antagonists: simultaneous optimization of the C(3)-aryl and C(6)-substituents. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1723-1727.	2.2	20
51	Identification of Phe313 of the Gonadotropin-Releasing Hormone (GnRH) Receptor as a Site Critical for the Binding of Nonpeptide GnRH Antagonists. Molecular Endocrinology, 2000, 14, 671-681.	3.7	41
52	Identification and initial structure-activity relationships of a novel non-peptide quinolone GnRH receptor antagonist. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2615-2620.	2.2	54
53	Investigation of the 4-O-alkylamine substituent of non-peptide quinolone GnRH receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2621-2624.	2.2	50
54	Asymmetric Synthesis of Chiral, Nonracemic Trifluoromethyl-Substituted Piperidines and Decahydroquinolines. Journal of the American Chemical Society, 1999, 121, 593-594.	13.7	77

Robert J Devita

#	ARTICLE	IF	CITATIONS
55	Novel synthesis of oxadiazoles via palladium catalysis. Tetrahedron Letters, 1998, 39, 3931-3934.	1.4	82
56	A Potent, Orally Bioavailable Benzazepinone Growth Hormone Secretagogue. Journal of Medicinal Chemistry, 1998, 41, 1716-1728.	6.4	44
57	Small molecule mimetics of GHRP-6. Expert Opinion on Investigational Drugs, 1997, 6, 1839-1843.	4.1	5
58	Heterocyclic analogs of the benzolactam nucleus of the non-peptidic growth hormone secretagogue L-692,429. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1281-1286.	2.2	11
59	Benzolactam growth hormone secretagogues: Carboxamides as replacements for the 2′-tetrazole moiety of L-692,429. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2249-2254.	2.2	20
60	Benzolactam growth hormone secretagogues: replacements for the 2′-tetrazole moiety of L-692,429. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1807-1812.	2.2	12
61	Structure-activity relationships of the non-peptidyl growth hormone secretagogue L-692,429. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2709-2714.	2.2	13
62	Structure-activity relationships in the amino acid sidechain of L-692,429. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1117-1122.	2.2	38
63	Direct syntheses of polyfused ring systems by intramolecular tandem palladium-ene/Heck insertion reactions. Journal of Organic Chemistry, 1991, 56, 6256-6257.	3.2	50
64	A mild four-carbon homologation of aldehydes to E,E-dienamines. Tetrahedron Letters, 1990, 31, 307-310.	1.4	35
65	Enantioselective total synthesis of neooxazolomycin. Journal of the American Chemical Society, 1990, 112, 4070-4072.	13.7	97
66	Synthesis of the fused bicyclic lactam-lactone terminus of neooxazolomycin by a novel dianion cyclocondensation. Tetrahedron Letters, 1988, 29, 2521-2524.	1.4	15
67	Rational design of 4-[(methylsulfonyl)amino]benzamides as class III antiarrhythmic agents. Journal of Medicinal Chemistry, 1987, 30, 755-758.	6.4	41
68	Synthesis and antiarrhythmic activity of novel 3-alkyl-1-[.omega[4-[(alkylsulfonyl)amino]phenyl]omegahydroxyalkyl]-1H-imidazolium salts and related compounds. Journal of Medicinal Chemistry, 1987, 30, 696-704.	6.4	17