List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3674636/publications.pdf Version: 2024-02-01

KRISTI VONCK

#	Article	IF	CITATIONS
1	Deep Brain Stimulation in Patients with Refractory Temporal Lobe Epilepsy. Epilepsia, 2007, 48, 1551-1560.	2.6	393
2	Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy. Annals of Neurology, 2002, 52, 556-565.	2.8	339
3	Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization. Progress in Neurobiology, 2014, 121, 19-35.	2.8	257
4	Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. Journal of Neurochemistry, 2011, 117, 461-469.	2.1	208
5	Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia, 2015, 56, 1669-1686.	2.6	167
6	A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure: the Journal of the British Epilepsy Association, 2015, 32, 52-61.	0.9	161
7	International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience, 2020, 14, 568051.	1.0	143
8	Vagus nerve stimulation…25 years later! What do we know about the effects on cognition?. Neuroscience and Biobehavioral Reviews, 2014, 45, 63-71.	2.9	139
9	Electrical Stimulation for the Treatment of Epilepsy. Neurotherapeutics, 2009, 6, 218-227.	2.1	126
10	Vagus nerve stimulation for refractory epilepsy: A Belgian multicenter study. European Journal of Paediatric Neurology, 2007, 11, 261-269.	0.7	118
11	Vagus Nerve Stimulation for Refractory Epilepsy: A Transatlantic Experience. Journal of Clinical Neurophysiology, 2004, 21, 283-289.	0.9	108
12	Acute Single Photon Emission Computed Tomographic Study of Vagus Nerve Stimulation in Refractory Epilepsy. Epilepsia, 2000, 41, 601-609.	2.6	94
13	Programmed and Magnet-Induced Vagus Nerve Stimulation for Refractory Epilepsy. Journal of Clinical Neurophysiology, 2001, 18, 402-407.	0.9	84
14	Comparison of hippocampal Deep Brain Stimulation with high (130Hz) and low frequency (5Hz) on afterdischarges in kindled rats. Epilepsy Research, 2010, 88, 239-246.	0.8	84
15	Seizures in the intrahippocampal kainic acid epilepsy model: characterization using long-term video-EEG monitoring in the rat. Acta Neurologica Scandinavica, 2009, 119, 293-303.	1.0	80
16	A DECADE OF EXPERIENCE WITH DEEP BRAIN STIMULATION FOR PATIENTS WITH REFRACTORY MEDIAL TEMPORAL LOBE EPILEPSY. International Journal of Neural Systems, 2013, 23, 1250034.	3.2	79
17	Neurological manifestations and neuroâ€invasive mechanisms of the severe acute respiratory syndrome coronavirus type 2. European Journal of Neurology, 2020, 27, 1578-1587	1.7	79
18	The Mechanism of Action of Vagus Nerve Stimulation for Refractory Epilepsy. Journal of Clinical Neurophysiology, 2001, 18, 394-401.	0.9	77

#	Article	IF	CITATIONS
19	Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. NeuroImage, 2011, 56, 1122-1133.	2.1	75
20	Dipole Modeling in Epilepsy Surgery Candidates. Epilepsia, 1997, 38, 208-218.	2.6	73
21	Direct Medical Costs of Refractory Epilepsy Incurred by Three Different Treatment Modalities: A Prospective Assessment. Epilepsia, 2002, 43, 96-102.	2.6	72
22	Long-term Deep Brain Stimulation for Refractory Temporal Lobe Epilepsy. Epilepsia, 2005, 46, 98-99.	2.6	72
23	Recent advances in devices for vagus nerve stimulation. Expert Review of Medical Devices, 2018, 15, 527-539.	1.4	72
24	Thalamic and limbic involvement in the mechanism of action of vagus nerve stimulation, a SPECT study. Seizure: the Journal of the British Epilepsy Association, 2008, 17, 699-706.	0.9	70
25	Effects of vagus nerve stimulation on pro- and anti-inflammatory cytokine induction in patients with refractory epilepsy. Journal of Neuroimmunology, 2009, 214, 104-108.	1.1	69
26	Long-term results of vagus nerve stimulation in refractory epilepsy. Seizure: the Journal of the British Epilepsy Association, 1999, 8, 328-334.	0.9	68
27	Vagus nerve stimulation for refractory epilepsy. Seizure: the Journal of the British Epilepsy Association, 2001, 10, 448-455.	0.9	61
28	High Frequency Deep Brain Stimulation in the Hippocampus Modifies Seizure Characteristics in Kindled Rats. Epilepsia, 2007, 48, 1543-1550.	2.6	60
29	Suppression of hippocampal epileptic seizures in the kainate rat by Poisson distributed stimulation. Epilepsia, 2010, 51, 2297-2304.	2.6	60
30	The antidepressant mechanism of action of vagus nerve stimulation: Evidence from preclinical studies. Neuroscience and Biobehavioral Reviews, 2015, 56, 26-34.	2.9	60
31	Deep brain and cortical stimulation for epilepsy. The Cochrane Library, 2017, 2017, CD008497.	1.5	59
32	Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neuroscience and Biobehavioral Reviews, 2016, 65, 113-141.	2.9	58
33	Efficacy of vagus nerve stimulation for refractory epilepsy among patient subgroups: A re-analysis using the Engel classification. Seizure: the Journal of the British Epilepsy Association, 2011, 20, 331-335.	0.9	57
34	The antidepressant-like effect of vagus nerve stimulation is mediated through the locus coeruleus. Journal of Psychiatric Research, 2015, 68, 1-7.	1.5	54
35	Vagus nerve stimulation in refractory and super-refractory status epilepticus – A systematic review. Brain Stimulation, 2019, 12, 1101-1110.	0.7	53
36	The systemic kainic acid rat model of temporal lobe epilepsy: Long-term EEG monitoring. Brain Research, 2015, 1627, 1-11.	1.1	51

KRISTL VONCK

#	Article	IF	CITATIONS
37	Vagus nerve stimulation in refractory epilepsy: SPECT activation study. Journal of Nuclear Medicine, 2000, 41, 1145-54.	2.8	51
38	EEG source connectivity to localize the seizure onset zone in patients with drug resistant epilepsy. NeuroImage: Clinical, 2017, 16, 689-698.	1.4	50
39	The cognitive effects of amygdalohippocampal deep brain stimulation in patients with temporal lobe epilepsy. Epilepsy and Behavior, 2011, 22, 759-764.	0.9	48
40	Vagus nerve stimulation for refractory status epilepticus. European Journal of Paediatric Neurology, 2009, 13, 286-289.	0.7	44
41	Tracking slow modulations in synaptic gain using dynamic causal modelling: Validation in epilepsy. Neurolmage, 2015, 107, 117-126.	2.1	43
42	Perfusion SPECT changes after acute and chronic vagus nerve stimulation in relation to prestimulus condition and long-term clinical efficacy. Journal of Nuclear Medicine, 2002, 43, 733-44.	2.8	43
43	Predictive factors for outcome of invasive video-EEG monitoring and subsequent resective surgery in patients with refractory epilepsy. Clinical Neurology and Neurosurgery, 2010, 112, 118-126.	0.6	40
44	Cell therapy in models for temporal lobe epilepsy. Seizure: the Journal of the British Epilepsy Association, 2007, 16, 565-578.	0.9	39
45	Involvement of fast-spiking cells in ictal sequences during spontaneous seizures in rats with chronic temporal lobe epilepsy. Brain, 2017, 140, 2355-2369.	3.7	39
46	Small animal positron emission tomography during vagus nerve stimulation in rats: A pilot study. Epilepsy Research, 2005, 67, 133-141.	0.8	38
47	Hippocampal deep brain stimulation induces decreased rCBF in the hippocampal formation of the rat. Neurolmage, 2010, 52, 55-61.	2.1	37
48	Anatomical and physiological basis and mechanism of action of neurostimulation for epilepsy. , 2007, 97, 321-328.		36
49	Vagal nerve stimulation — a 15-year survey of an established treatment modality in epilepsy surgery. Advances and Technical Standards in Neurosurgery, 2009, 34, 111-146.	0.2	35
50	Longâ€ŧerm chemogenetic suppression of spontaneous seizures in a mouse model for temporal lobe epilepsy. Epilepsia, 2019, 60, 2314-2324.	2.6	34
51	Increased rat serum corticosterone suggests immunomodulation by stimulation of the vagal nerve. Journal of Neuroimmunology, 2009, 212, 102-105.	1.1	32
52	The effect of vagus nerve stimulation on response inhibition. Epilepsy and Behavior, 2016, 64, 171-179.	0.9	32
53	Neurophysiological investigations of drug resistant epilepsy patients treated with vagus nerve stimulation to differentiate responders from nonâ€responders. European Journal of Neurology, 2020, 27, 1178-1189.	1.7	31
54	Deep brain and cortical stimulation for epilepsy. , 2014, , CD008497.		30

4

#	Article	IF	CITATIONS
55	Generator replacement in epilepsy patients treated with vagus nerve stimulation. Seizure: the Journal of the British Epilepsy Association, 2005, 14, 89-99.	0.9	29
56	Cognitive deterioration in adult epilepsy: clinical characteristics of "Accelerated Cognitive Ageing― Acta Neurologica Scandinavica, 2017, 136, 47-53.	1.0	29
57	Transcutaneous Vagus Nerve Stimulation Does Not Affect Verbal Memory Performance in Healthy Volunteers. Frontiers in Psychology, 2020, 11, 551.	1.1	29
58	The Effect of Vagus Nerve Stimulation on CSF Monoamines and the PTZ Seizure Threshold in Dogs. Brain Stimulation, 2015, 8, 1-6.	0.7	28
59	ELECTROPHYSIOLOGICAL RESPONSES FROM VAGUS NERVE STIMULATION IN RATS. International Journal of Neural Systems, 2013, 23, 1350027.	3.2	27
60	Vagus nerve stimulation does not affect spatial memory in fast rats, but has both anti-convulsive and pro-convulsive effects on amygdala-kindled seizures. Neuroscience, 2006, 140, 1443-1451.	1.1	26
61	EEG Derived Brain Activity Reflects Treatment Response from Vagus Nerve Stimulation in Patients with Epilepsy. International Journal of Neural Systems, 2017, 27, 1650048.	3.2	25
62	Epilepsy surgery in Belgium, the experience in Gent. Acta Neurologica Belgica, 1999, 99, 256-65.	0.5	25
63	Neurostimulation for refractory epilepsy. Acta Neurologica Belgica, 2003, 103, 213-7.	0.5	25
64	The Acute and Chronic Effect of Vagus Nerve Stimulation in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Epilepsia, 2005, 46, 94-97.	2.6	24
65	Vagus Nerve Stimulation Applied with a Rapid Cycle Has More Profound Influence on Hippocampal Electrophysiology Than a Standard Cycle. Neurotherapeutics, 2016, 13, 592-602.	2.1	24
66	Improved Localization of Seizure Onset Zones Using Spatiotemporal Constraints and Time-Varying Source Connectivity. Frontiers in Neuroscience, 2017, 11, 156.	1.4	24
67	Clinical experience with vagus nerve stimulation and deep brain stimulation in epilepsy. , 2007, 97, 273-280.		24
68	Detection of focal epileptiform events in the EEG by spatio-temporal dipole clustering. Clinical Neurophysiology, 2008, 119, 1756-1770.	0.7	23
69	Non-pharmacological treatment options for refractory epilepsy: An overview of human treatment modalities and their potential utility in dogs. Veterinary Journal, 2014, 199, 332-339.	0.6	23
70	Regional brain perfusion changes during standard and microburst vagus nerve stimulation in dogs. Epilepsy Research, 2014, 108, 616-622.	0.8	23
71	A novel implantable vagus nerve stimulation system (ADNS-300) for combined stimulation and recording of the vagus nerve: Pilot trial at Ghent University Hospital. Epilepsy Research, 2010, 92, 231-239.	0.8	22
72	Responsive neurostimulation in epilepsy. Expert Review of Neurotherapeutics, 2015, 15, 1445-1454.	1.4	22

#	Article	IF	CITATIONS
73	Alterations in the functional brain network in a rat model of epileptogenesis: A longitudinal resting state fMRI study. NeuroImage, 2019, 202, 116144.	2.1	22
74	30 years of vagus nerve stimulation trials in epilepsy: Do we need neuromodulation-specific trial designs?. Epilepsy Research, 2019, 153, 71-75.	0.8	22
75	Recording temporal lobe epileptic activity with MEG in a light-weight magnetic shield. Seizure: the Journal of the British Epilepsy Association, 2011, 20, 414-418.	0.9	21
76	Modulation of Hippocampal Activity by Vagus Nerve Stimulation in Freely Moving Rats. Brain Stimulation, 2016, 9, 124-132.	0.7	21
77	Modulation of seizure threshold by vagus nerve stimulation in an animal model for motor seizures. Acta Neurologica Scandinavica, 2010, 121, 271-276.	1.0	20
78	In Search of Optimal DBS Paradigms to Treat Epilepsy: Bilateral Versus Unilateral Hippocampal Stimulation in a Rat Model for Temporal Lobe Epilepsy. Brain Stimulation, 2015, 8, 192-199.	0.7	20
79	Longâ€ŧerm chemogenetic suppression of seizures in a multifocal rat model of temporal lobe epilepsy. Epilepsia, 2021, 62, 659-670.	2.6	19
80	Repeated assessment of larynx compound muscle action potentials using a self-sizing cuff electrode around the vagus nerve in experimental rats. Journal of Neuroscience Methods, 2011, 198, 287-293.	1.3	18
81	Closing the loop for patients with epilepsy. Nature Reviews Neurology, 2015, 11, 252-254.	4.9	17
82	The potential of invasive and non-invasive vagus nerve stimulation to improve verbal memory performance in epilepsy patients. Scientific Reports, 2022, 12, 1984.	1.6	17
83	Intensity-dependent modulatory effects of vagus nerve stimulation on cortical excitability. Acta Neurologica Scandinavica, 2013, 128, 391-396.	1.0	16
84	Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization. Neurolmage: Clinical, 2016, 11, 252-263.	1.4	16
85	Repetitive transcranial magnetic stimulation for the treatment of refractory epilepsy. Expert Review of Neurotherapeutics, 2016, 16, 1093-1110.	1.4	16
86	Vagus Nerve Stimulator Placement in Dogs: Surgical Implantation Technique, Complications, Longâ€Term Followâ€Up, and Practical Considerations. Veterinary Surgery, 2016, 45, 71-78.	0.5	15
87	Vagus Nerve Stimulation-Induced Laryngeal Motor Evoked Potentials: A Possible Biomarker of Effective Nerve Activation. Frontiers in Neuroscience, 2019, 13, 880.	1.4	15
88	Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures. Experimental Neurology, 2016, 277, 244-251.	2.0	14
89	Vagus Nerve Stimulation for Epilepsy, Clinical Efficacy of Programmed and Magnet Stimulation. , 2002, 79, 93-98.		14
90	Deep brain stimulation for epilepsy: knowledge gained from experimental animal models. Acta Neurologica Belgica, 2009, 109, 63-80.	0.5	14

#	Article	IF	CITATIONS
91	Vagus Nerve Stimulation has Antidepressant Effects in the Kainic Acid Model for Temporal Lobe Epilepsy. Brain Stimulation, 2015, 8, 13-20.	0.7	12
92	Heart rate, electrodermal responses and frontal alpha asymmetry to accepted and non-accepted solutions and drinks. Food Quality and Preference, 2020, 82, 103893.	2.3	12
93	Investigating the Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Cortical Excitability in Healthy Males. Neuromodulation, 2022, 25, 395-406.	0.4	12
94	Non-invasive vagal nerve stimulation enhances cognitive emotion regulation. Behaviour Research and Therapy, 2021, 145, 103933.	1.6	12
95	Chemogenetic Seizure Control with Clozapine and the Novel Ligand JHU37160 Outperforms the Effects of Levetiracetam in the Intrahippocampal Kainic Acid Mouse Model. Neurotherapeutics, 2022, 19, 342-351.	2.1	12
96	Clinical Vagus Nerve Stimulation Paradigms Induce Pronounced Brain and Body Hypothermia in Rats. International Journal of Neural Systems, 2017, 27, 1750016.	3.2	11
97	Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain. PLoS ONE, 2015, 10, e0133245.	1.1	11
98	Vagus nerve stimulation and the postictal state. Epilepsy and Behavior, 2010, 19, 182-185.	0.9	10
99	Evaluation of heart rate variability in dogs during standard and microburst vagus nerve stimulation: A pilot study. Veterinary Journal, 2014, 202, 651-653.	0.6	10
100	Hippocampal Deep Brain Stimulation Reduces Glucose Utilization in the Healthy Rat Brain. Molecular Imaging and Biology, 2015, 17, 373-383.	1.3	10
101	A prestimulation evaluation protocol for patients with drug resistant epilepsy. Seizure: the Journal of the British Epilepsy Association, 2017, 44, 137-142.	0.9	10
102	Electroencephalography During Nociceptive Stimulation in Chronic Pain Patients: A Systematic Review. Pain Medicine, 2020, 21, 3413-3427.	0.9	10
103	Transcutaneous auricular vagus nerve stimulation cannot modulate the P3b event-related potential in healthy volunteers. Clinical Neurophysiology, 2022, 135, 22-29.	0.7	10
104	Are psychotic symptoms related to vagus nerve stimulation in epilepsy patients?. Acta Neurologica Belgica, 2003, 103, 170-5.	0.5	10
105	Evolution in VNS therapy for refractory epilepsy, experience with Demipulse devices at Ghent University Hospital. Seizure: the Journal of the British Epilepsy Association, 2010, 19, 531-535.	0.9	9
106	Neurostimulation for epilepsy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 108, 955-970.	1.0	9
107	A Preclinical Study of Laryngeal Motor-Evoked Potentials as a Marker Vagus Nerve Activation. International Journal of Neural Systems, 2015, 25, 1550034.	3.2	9
108	Deep brain stimulation reduces evoked potentials with a dual time course in freely moving rats: Potential neurophysiological basis for intermittent as an alternative to continuous stimulation. Epilepsia, 2020, 61, 903-913.	2.6	9

#	Article	IF	CITATIONS
109	Functional electrical stimulation of the left recurrent laryngeal nerve using a vagus nerve stimulator in a normal horse. Veterinary Journal, 2011, 189, 346-348.	0.6	8
110	The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy. Brain Topography, 2016, 29, 572-589.	0.8	8
111	Development of a Rat Model for Glioma-Related Epilepsy. International Journal of Molecular Sciences, 2020, 21, 6999.	1.8	8
112	Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain. Micromachines, 2021, 12, 38.	1.4	8
113	Auricular transcutaneous vagus nerve stimulation modulates the heart-evoked potential. Brain Stimulation, 2022, 15, 260-269.	0.7	8
114	Source localization in refractory partial epilepsy. Revue Neurologique, 1999, 155, 499-508.	0.6	8
115	Reduced distractor interference during vagus nerve stimulation. International Journal of Psychophysiology, 2018, 128, 93-99.	0.5	7
116	Mapping the epileptic brain with EEG dynamical connectivity: Established methods and novel approaches. European Physical Journal Plus, 2012, 127, 1.	1.2	6
117	Gender issues during the times of COVIDâ€19 pandemic. European Journal of Neurology, 2021, 28, e73-e77.	1.7	6
118	Feasibility of transcutaneous auricular vagus nerve stimulation in treatment of drug resistant epilepsy: A multicenter prospective study. Epilepsy Research, 2021, 177, 106776.	0.8	6
119	Epilepsy surgery in Belgium, the Flemish experience. Acta Neurologica Belgica, 1996, 96, 6-18.	0.5	6
120	Impact of Vagal Nerve Stimulation on Objective Vocal Quality, a Pilot Study. Journal of Voice, 2015, 29, 777.e9-777.e15.	0.6	5
121	A Feasibility Study to Investigate Chemogenetic Modulation of the Locus Coeruleus by Means of Single Unit Activity. Frontiers in Neuroscience, 2020, 14, 162.	1.4	5
122	Pre-ictal heart rate variability alterations in focal onset seizures and response to vagus nerve stimulation. Seizure: the Journal of the British Epilepsy Association, 2021, 86, 175-180.	0.9	5
123	Acute symptomatic seizures following intracerebral hemorrhage in the rat collagenase model. Epilepsy Research, 2020, 164, 106364.	0.8	5
124	Laryngeal Muscle-Evoked Potential Recording as an Indicator of Vagal Nerve Fiber Activation. Neuromodulation, 2022, 25, 461-470.	0.4	5
125	Long-term evaluation of synchronization between scalp EEG signals in partial epilepsy. , 0, , .		4
126	Event-Related Potentials Reveal Preserved Attention Allocation but Impaired Emotion Regulation in Patients with Epilepsy and Comorbid Negative Affect. PLoS ONE, 2015, 10, e0116817.	1.1	4

#	Article	IF	CITATIONS
127	Transcutaneous Vagus and Trigeminal Nerve Stimulation. , 2017, , 115-126.		4
128	Disruption, but not overexpression of urate oxidase alters susceptibility to pentylenetetrazole―and pilocarpineâ€induced seizures in mice. Epilepsia, 2016, 57, e146-50.	2.6	3
129	Hypothermia Masks Most of the Effects of Rapid Cycling VNS on Rat Hippocampal Electrophysiology. International Journal of Neural Systems, 2019, 29, 1950008.	3.2	3
130	Optimized Parameters for Transducing the Locus Coeruleus Using Canine Adenovirus Type 2 (CAV2) Vector in Rats for Chemogenetic Modulation Research. Frontiers in Neuroscience, 2021, 15, 663337.	1.4	3
131	Severe autonomic nervous system imbalance in Lennox-Gastaut syndrome patients demonstrated by heart rate variability recordings. Epilepsy Research, 2021, 177, 106783.	0.8	3
132	Is vagus nerve stimulation effective in the treatment of drug-resistant epilepsy?. Bioelectronics in Medicine, 2018, 1, 219-221.	2.0	1
133	SARSâ€CoVâ€2 vaccineâ€related neurological complications need large collaborative studies, not single case reports or small descriptive series. European Journal of Neurology, 2021, 28, 3223-3223.	1.7	1
134	Comparison of In Vivo and Ex Vivo Magnetic Resonance Imaging in a Rat Model for Glioblastoma-Associated Epilepsy. Diagnostics, 2021, 11, 1311.	1.3	1
135	White Matter Integrity in a Rat Model of Epileptogenesis: Structural Connectomics and Fixel-Based Analysis. Brain Connectivity, 2022, 12, 320-333.	0.8	1
136	Vagus Nerve and Hippocampal Stimulation for Refractory Epilepsy. , 0, , 283-297.		1
137	A new method for detection and source analysis of EEG spikes. , 0, , .		0
138	High resolution μSPECT for brain activation analysis in small animals. , 2009, , .		0
139	Epileptogenic focus localization through connectivity analysis of the intracranial EEG: A retrospective study in 2 patients. , 2011 , , .		Ο
140	The effect of neuropeptide FF in the amygdala kindling model. Acta Neurologica Scandinavica, 2016, 134, 181-188.	1.0	0
141	Why Does VNS Take So Long to Work?. , 2008, , 470-477.		Ο
142	Brain Stimulation in Epilepsy—An Old Technique with a New Promise?. Blue Books of Neurology, 2009, , 322-340.	0.1	0
143	INVASIVE BRAIN STIMULATION IN THE TREATMENT OF EPILEPSY. , 2013, , .		0
144	Response to "Negative Results Call for More Delicate Experimental Design in Cortical Excitability Change of taVNS Interventionâ€: Neuromodulation, 2021, 24, 1499-1500.	0.4	0