Suk Woo Nam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/367459/publications.pdf

Version: 2024-02-01

98 papers 3,162 citations

147801 31 h-index 54 g-index

98 all docs 98 docs citations 98 times ranked 5145 citing authors

#	Article	IF	CITATIONS
1	Increased expression of histone deacetylase 2 is found in human gastric cancer. Apmis, 2005, 113, 264-268.	2.0	307
2	Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology, 2013, 57, 1055-1067.	7.3	279
3	Molecular changes from dysplastic nodule to hepatocellular carcinoma through gene expression profiling. Hepatology, 2005, 42, 809-818.	7.3	167
4	MiR-145 functions as a tumor suppressor by directly targeting histone deacetylase 2 in liver cancer. Cancer Letters, 2013, 335, 455-462.	7.2	103
5	MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. Oncotarget, 2015, 6, 8089-8102.	1.8	100
6	HDAC2 overexpression confers oncogenic potential to human lung cancer cells by deregulating expression of apoptosis and cell cycle proteins. Journal of Cellular Biochemistry, 2012, 113, 2167-2177.	2.6	98
7	Histone deacetylase 6 functions as a tumor suppressor by activating c-Jun NH2-terminal kinase-mediated beclin 1-dependent autophagic cell death in liver cancer. Hepatology, 2012, 56, 644-657.	7.3	91
8	Barrier to autointegration factor 1, procollagenâ€lysine, 2â€oxoglutarate 5â€dioxygenase 3, and splicing factor 3b subunit 4 as earlyâ€stage cancer decision markers and drivers of hepatocellular carcinoma. Hepatology, 2018, 67, 1360-1377.	7.3	90
9	HDAC1 Inactivation Induces Mitotic Defect and Caspase-Independent Autophagic Cell Death in Liver Cancer. PLoS ONE, 2012, 7, e34265.	2.5	89
10	Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. Journal of Hepatology, 2016, 64, 618-627.	3.7	88
11	MicroRNA-221 governs tumor suppressor HDAC6 to potentiate malignant progression of liver cancer. Journal of Hepatology, 2015, 63, 408-419.	3.7	84
12	A Long Non-Coding RNA snaR Contributes to 5-Fluorouracil Resistance in Human Colon Cancer Cells. Molecules and Cells, 2014, 37, 540-546.	2.6	73
13	Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer. Oncotarget, 2016, 7, 11412-11423.	1.8	73
14	Loss of caspase-2, -6 and -7 expression in gastric cancers. Apmis, 2004, 112, 330-335.	2.0	72
15	Transforming Growth Factor-Î ² Promotes Liver Tumorigenesis inÂMice via Up-regulation of Snail. Gastroenterology, 2017, 153, 1378-1391.e6.	1.3	71
16	HDAC6 Suppresses Letâ€7iâ€5p to Elicit TSP1/CD47â€Mediated Antiâ€Tumorigenesis and Phagocytosis of Hepatocellular Carcinoma. Hepatology, 2019, 70, 1262-1279.	7.3	59
17	Assessment and diagnostic relevance of novel serum biomarkers for early decision of ST-elevation myocardial infarction. Oncotarget, 2015, 6, 12970-12983.	1.8	57
18	MiR-101 functions as a tumor suppressor by directly targeting nemo-like kinase in liver cancer. Cancer Letters, 2014, 344, 204-211.	7.2	55

#	Article	IF	CITATIONS
19	Targeted Inactivation of HDAC2 Restores <i>p16INK4a</i> Activity and Exerts Antitumor Effects on Human Gastric Cancer. Molecular Cancer Research, 2013, 11, 62-73.	3.4	54
20	Targeted disruption of Nemoâ€like kinase inhibits tumor cell growth by simultaneous suppression of cyclin D1 and CDK2 in human hepatocellular carcinoma. Journal of Cellular Biochemistry, 2010, 110, 687-696.	2.6	52
21	HDAC2 Provides a Critical Support to Malignant Progression of Hepatocellular Carcinoma through Feedback Control of mTORC1 and AKT. Cancer Research, 2014, 74, 1728-1738.	0.9	52
22	Gastrokine 1 protein is a potential theragnostic target for gastric cancer. Gastric Cancer, $2018, 21, 956-967$.	5. 3	46
23	Serum small extracellular vesicleâ€derived <i>LINC00853</i> as a novel diagnostic marker for early hepatocellular carcinoma. Molecular Oncology, 2020, 14, 2646-2659.	4.6	45
24	Epigenetic reader BRD4 inhibition as a therapeutic strategy to suppress E2F2-cell cycle regulation circuit in liver cancer. Oncotarget, 2016, 7, 32628-32640.	1.8	43
25	MicroRNAâ€495â€3p functions as a tumor suppressor by regulating multiple epigenetic modifiers in gastric carcinogenesis. Journal of Pathology, 2018, 244, 107-119.	4.5	40
26	miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor. Experimental and Molecular Medicine, 2014, 46, e123-e123.	7.7	38
27	Gastrokine 1 inhibits the carcinogenic potentials of Helicobacter pylori CagA. Carcinogenesis, 2014, 35, 2619-2629.	2.8	37
28	The RNA-binding Protein HuD Regulates Autophagosome Formation in Pancreatic \hat{l}^2 Cells by Promoting Autophagy-related Gene 5 Expression. Journal of Biological Chemistry, 2014, 289, 112-121.	3.4	37
29	Gastrokine 1 inhibits gastric cancer cell migration and invasion by downregulating RhoA expression. Gastric Cancer, 2017, 20, 274-285.	5.3	36
30	Exosomal microRNAâ€4661â€5p–based serum panel as a potential diagnostic biomarker for earlyâ€stage hepatocellular carcinoma. Cancer Medicine, 2020, 9, 5459-5472.	2.8	35
31	SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma. BMB Reports, 2018, 51, 57-58.	2.4	34
32	Discriminating the molecular basis of hepatotoxicity using the large-scale characteristic molecular signatures of toxicants by expression profiling analysis. Toxicology, 2008, 249, 176-183.	4.2	32
33	MYCâ€regulated genes involved in liver cell dysplasia identified in a transgenic model of liver cancer. Journal of Pathology, 2012, 228, 520-533.	4.5	31
34	T-cell immune regulator 1 enhances metastasis in hepatocellular carcinoma. Experimental and Molecular Medicine, 2018 , 50 , e 420 -e 420 .	7.7	29
35	HDAC6 sustains growth stimulation by prolonging the activation of EGF receptor through the inhibition of rabaptin-5-mediated early endosome fusion in gastric cancer. Cancer Letters, 2014, 354, 97-106.	7.2	28
36	Uptake and tumor-suppressive pathways of exosome-associated GKN1 protein in gastric epithelial cells. Gastric Cancer, 2020, 23, 848-862.	5. 3	27

#	Article	IF	CITATIONS
37	Autotaxin (lysoPLD/NPP2) protects fibroblasts from apoptosis through its enzymatic product, lysophosphatidic acid, utilizing albumin-bound substrate. Biochemical and Biophysical Research Communications, 2005, 337, 967-975.	2.1	26
38	Histone Deacetylases and Their Regulatory MicroRNAs in Hepatocarcinogenesis. Journal of Korean Medical Science, 2015, 30, 1375.	2.5	24
39	Early detection of hepatocellular carcinoma via liquid biopsy: panel of small extracellular vesicleâ€derived long noncoding RNAs identified as markers. Molecular Oncology, 2021, 15, 2715-2731.	4.6	22
40	Reduced expression of the RNAâ€binding protein HuD in pancreatic neuroendocrine tumors correlates with low p27 ^{Kip1} levels and poor prognosis. Journal of Pathology, 2018, 246, 231-243.	4.5	21
41	Comparative analysis of expression profiling of early-stage carcinogenesis using nodule-in-nodule-type hepatocellular carcinoma. European Journal of Gastroenterology and Hepatology, 2006, 18, 239-247.	1.6	20
42	Influence of the <i>hTERT </i> rs2736100 polymorphism on telomere length in gastric cancer. World Journal of Gastroenterology, 2015, 21, 9328.	3.3	19
43	Identification of characteristic molecular signature for volatile organic compounds in peripheral blood of rat. Toxicology and Applied Pharmacology, 2011, 250, 162-169.	2.8	18
44	Oncogenic IL7R is downregulated by histone deacetylase inhibitor in esophageal squamous cell carcinoma via modulation of acetylated FOXO1. International Journal of Oncology, 2018, 53, 395-403.	3.3	18
45	NKX6.3 controls gastric differentiation and tumorigenesis. Oncotarget, 2015, 6, 28425-28439.	1.8	18
46	Gastrokine 1 inhibits gastrin-induced cell proliferation. Gastric Cancer, 2016, 19, 381-391.	5. 3	16
47	The effect of Helicobacter pylori CagA on the HER-2 copy number and expression in gastric cancer. Gene, 2014, 546, 288-296.	2.2	15
48	Overexpression of SIRT2 contributes tumor cell growth in hepatocellular carcinomas. Molecular and Cellular Toxicology, 2011, 7, 367-374.	1.7	14
49	Characteristic molecular and proteomic signatures of drugâ€induced liver injury in a rat model. Journal of Applied Toxicology, 2015, 35, 152-164.	2.8	14
50	Heterodimeric interaction between GKN2 and TFF1 entails synergistic antiproliferative and pro-apoptotic effects on gastric cancer cells. Gastric Cancer, 2017, 20, 772-783.	5. 3	14
51	The diagnostic value of serum gastrokine 1 (GKN1) protein in gastric cancer. Cancer Medicine, 2019, 8, 5507-5514.	2.8	14
52	Gastrokine 1 induces senescence and apoptosis through regulating telomere length in gastric cancer. Oncotarget, 2014, 5, 11695-11708.	1.8	14
53	Gastrokine 1 Expression in the Human Gastric Mucosa Is Closely Associated with the Degree of Gastritis and DNA Methylation. Journal of Gastric Cancer, 2013, 13, 232.	2.5	13
54	SMARCA4 oncogenic potential via IRAK1 enhancer to activate Gankyrin and AKR1B10 in liver cancer. Oncogene, 2021, 40, 4652-4662.	5.9	13

#	Article	IF	Citations
55	Epigenetic landscape change analysis during human EMT sheds light on a key EMT mediator TRIM29. Oncotarget, 2017, 8, 98322-98335.	1.8	13
56	Transcriptome analysis reveals that $M\tilde{A}^{1/4}$ llerian inhibiting substance regulates signaling pathways that contribute to endometrial carcinogenesis. International Journal of Oncology, 2015, 46, 2039-2046.	3.3	12
57	NKX6.3 Is a Transcription Factor for Wnt/ \hat{l}^2 -catenin and Rho-GTPase Signaling-Related Genes to Suppress Gastric Cancer Progression. EBioMedicine, 2016, 9, 97-109.	6.1	11
58	Preoperative immune landscape predisposes adverse outcomes in hepatocellular carcinoma patients with liver transplantation. Npj Precision Oncology, 2021, 5, 27.	5.4	11
59	Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Experimental and Molecular Medicine, 2020, 52, 582-593.	7.7	10
60	Identification of large-scale molecular changes 1 of Autotaxin(ENPP2) knock-down by small interfering RNA in breast cancer cells. Molecular and Cellular Biochemistry, 2006, 288, 91-106.	3.1	9
61	Upregulation of FGFR1 expression is associated with parathyroid carcinogenesis in HPT-JT syndrome due to an HRPT2 splicing mutation. International Journal of Oncology, 2014, 45, 641-650.	3.3	9
62	Novel Gene Signatures as Prognostic Biomarkers for Predicting the Recurrence of Hepatocellular Carcinoma. Cancers, 2022, 14, 865.	3.7	9
63	Identification of large-scale characteristic genes of Mýllerian inhibiting substance in human ovarian cancer cells. International Journal of Molecular Medicine, 2009, 23, 589-96.	4.0	8
64	The single nucleotide polymorphism (SNP) of the estrogen receptor- \hat{l}^2 gene, rs1256049, is associated with knee osteoarthritis in Korean population. Knee, 2014, 21, 242-246.	1.6	8
65	NKX6.3 Regulates Reactive Oxygen Species Production by Suppressing NF-kB and DNMT1 Activities in Gastric Epithelial Cells. Scientific Reports, 2017, 7, 2807.	3.3	8
66	Identification of novel biomarkers for prediction of neurological prognosis following cardiac arrest. Oncotarget, 2017, 8, 16144-16157.	1.8	8
67	GKN1 and miR-185 are associated with CpG island methylator phenotype in gastric cancers. Molecular and Cellular Toxicology, 2013, 9, 227-233.	1.7	7
68	Mutational Analysis of the <i>Epidermal Growth Factor Receptor</i> Gene in Gastrointestinal Stromal Tumors. Journal of Gastric Cancer, 2004, 4, 268.	2.5	6
69	ANKRD13a controls early cell-death checkpoint by interacting with RIP1 independent of NF-κB. Cell Death and Differentiation, 2022, 29, 1152-1163.	11.2	6
70	Gastric cancer exosomes contribute to the field cancerization of gastric epithelial cells surrounding gastric cancer. Gastric Cancer, 2022, 25, 490-502.	5.3	6
71	Serum Proteins, HMMR, NXPH4, PITX1 and THBS4; A Panel of Biomarkers for Early Diagnosis of Hepatocellular Carcinoma. Journal of Clinical Medicine, 2022, 11, 2128.	2.4	6
72	SRSF3 Depletion Leads to an Increase in SF3B4 Expression in SNU-368 HCC Cells. Anticancer Research, 2020, 40, 2033-2042.	1.1	5

#	Article	IF	Citations
73	Mutational Analysis of Pro-apoptoticBADGene in Non-small Cell Lung Cancer. Journal of Lung Cancer, 2006, 5, 35.	0.2	5
74	Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine. Toxicology and Applied Pharmacology, 2009, 237, 91-101.	2.8	4
75	Decreased expression of TFF2 and gastric carcinogenesis. Molecular and Cellular Toxicology, 2010, 6, 261-269.	1.7	4
76	Loss-of-function mutations in the Transcription Factor 7 (T cell factor-1) gene in hepatogastrointestinal cancers. Molecular and Cellular Toxicology, 2010, 6, 271-278.	1.7	4
77	TGFBR2 frameshift mutation in gastric tumors with microsatellite instability. Molecular and Cellular Toxicology, 2010, 6, 321-326.	1.7	4
78	Multiple genetic mutations caused by NKX6.3 depletion contribute to gastric tumorigenesis. Scientific Reports, 2018, 8, 17609.	3.3	4
79	Association of IL-17A/F polymorphisms with the risk of gastritis and gastric cancer in the Korean population. Molecular and Cellular Toxicology, 2016, 12, 327-336.	1.7	3
80	NKX6.3 protects against gastric mucosal atrophy by downregulating \hat{l}^2 -amyloid production. World Journal of Gastroenterology, 2019, 25, 330-345.	3.3	3
81	TNF- $\hat{l}\pm$ and TNF- \hat{l}^2 polymorphisms with susceptibility to gastric cancer in a Korean population. Molecular and Cellular Toxicology, 2010, 6, 161-167.	1.7	2
82	Characteristic molecular signatures of early exposure to volatile organic compounds in rat liver. Biomarkers, 2013, 18, 706-715.	1.9	2
83	Genetic association of KCNA5 and KCNJ3 polymorphisms in Korean children with epilepsy. Molecular and Cellular Toxicology, 2014, 10, 223-228.	1.7	2
84	Identification of aberrant overexpression of long non-coding RNA MALAT1 and role as a regulatory microRNA in liver cancer. Molecular and Cellular Toxicology, 2017, 13, 443-451.	1.7	2
85	Sodium nitroprusside induces autophagic cell death in glutathione-depleted osteoblasts. Molecular and Cellular Toxicology, 2010, 6, 41-49.	1.7	1
86	O6-methylguanine DNA methyltransferase gene promoter methylation status in glioblastoma and its correlation with other prognostic markers. Molecular and Cellular Toxicology, 2011, 7, 425-430.	1.7	1
87	Genetic alterations of the CHOP gene in gastric cancers. Molecular and Cellular Toxicology, 2011, 7, 1-6.	1.7	1
88	Deciphering cellular and molecular causes of the tumor functional heterogeneity of liver cancer. Experimental and Molecular Medicine, 2018, 50, e415-e415.	7.7	1
89	Differentially expressed genes between intestinal- and diffuse-type gastric cancers. Molecular and Cellular Toxicology, 2018, 14, 303-313.	1.7	1
90	Genetic and Expression Analysis of the SIRT1 Gene in Gastric Cancers. Journal of Gastric Cancer, 2010, 10, 91.	2.5	1

#	Article	IF	CITATIONS
91	Evaluation and application of RNAs derived from laser microdissected specimens using DNA microarray for expression genomics. Biochip Journal, 2010, 4, 322-328.	4.9	O
92	Characteristic molecular signature of pericardial effusion identifies malignant cancer in pericardial disorder patients. Molecular and Cellular Toxicology, 2020, 16, 211-220.	1.7	0
93	Expression Pattern of Caspase 2 in Korean Gastric Cancers. Journal of Gastric Cancer, 2003, 3, 38.	2.5	0
94	Functional Defect of the Fas Mutants Detected in Gastric Cancers. Journal of Gastric Cancer, 2003, 3, 186.	2.5	0
95	Expression Pattern of KLF6 in Korean Gastric Cancers. Journal of Gastric Cancer, 2005, 5, 34.	2.5	O
96	Expression Pattern of KLF4 in Korean Gastric Cancers. Journal of Gastric Cancer, 2005, 5, 200.	2.5	0
97	Expression Pattern of EphB2 in Gastric Cancer. Journal of Gastric Cancer, 2006, 6, 25.	2.5	O
98	Depletion of NK6 Homeobox 3 (NKX6.3) causes gastric carcinogenesis through copy number alterations by inducing impairment of DNA replication and repair regulation. Oncogenesis, 2021, 10, 85.	4.9	0