
Jing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3674375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A disease-associated mutation in thyroid hormone receptor $\hat{i}\pm 1$ causes hearing loss and sensory hair cell patterning defects in mice. Science Signaling, 2022, 15, .	3.6	4
2	Exacerbated age-related hearing loss in mice lacking the p43 mitochondrial T3 receptor. BMC Biology, 2021, 19, 18.	3.8	11
3	Endogenous Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Plays a Protective Effect Against Noise-Induced Hearing Loss. Frontiers in Cellular Neuroscience, 2021, 15, 658990.	3.7	2
4	Impulse Noise Induced Hidden Hearing Loss, Hair Cell Ciliary Changes and Oxidative Stress in Mice. Antioxidants, 2021, 10, 1880.	5.1	4
5	VGLUT3â€p.A211V variant fuses stereocilia bundles and elongates synaptic ribbons. Journal of Physiology, 2021, 599, 5397-5416.	2.9	5
6	A Single Cisterna Magna Injection of AAV Leads to Binaural Transduction in Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 783504.	3.7	4
7	LSP5-2157 a new inhibitor of vesicular glutamate transporters. Neuropharmacology, 2020, 164, 107902.	4.1	7
8	<i>G6PD</i> overexpression protects from oxidative stress and ageâ€related hearing loss. Aging Cell, 2020, 19, e13275.	6.7	37
9	rAAV-Mediated Cochlear Gene Therapy: Prospects and Challenges for Clinical Application. Journal of Clinical Medicine, 2020, 9, 589.	2.4	12
10	Presbycusis: An Update on Cochlear Mechanisms and Therapies. Journal of Clinical Medicine, 2020, 9, 218.	2.4	108
11	Physiology and Pharmacology of the Cochlea. , 2020, , 468-486.		0
12	ROS-Induced Activation of DNA Damage Responses Drives Senescence-Like State in Postmitotic Cochlear Cells: Implication for Hearing Preservation. Molecular Neurobiology, 2019, 56, 5950-5969.	4.0	57
13	Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging, 2019, 11, 9128-9146.	3.1	58
14	Toward Cochlear Therapies. Physiological Reviews, 2018, 98, 2477-2522.	28.8	90
15	Reversible p53 inhibition prevents cisplatinÂototoxicity without blocking chemotherapeutic efficacy. EMBO Molecular Medicine, 2017, 9, 7-26.	6.9	70
16	High mobility group box 1 (HMGB1): dual functions in the cochlear auditory neurons in response to stress?. Histochemistry and Cell Biology, 2017, 147, 307-316.	1.7	7
17	Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve. PLoS ONE, 2017, 12, e0169890.	2.5	14
18	Sound coding in the auditory nerve of gerbils. Hearing Research, 2016, 338, 32-39.	2.0	54

Jing Wang

#	Article	IF	CITATIONS
19	Contribution of auditory nerve fibers to compound action potential of the auditory nerve. Journal of Neurophysiology, 2014, 112, 1025-1039.	1.8	199
20	Molecular and Cellular Mechanisms of Loss of Residual Hearing after Cochlear Implantation. Annals of Otology, Rhinology and Laryngology, 2013, 122, 33-39.	1.1	54
21	The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain, 2012, 135, 3599-3613.	7.6	94
22	Oxidative Stress, Inflammation, and Autophagic Stress as the Key Mechanisms of Premature Age-Related Hearing Loss in SAMP8 Mouse Cochlea. Antioxidants and Redox Signaling, 2012, 16, 263-274.	5.4	161
23	Tmprss3, a Transmembrane Serine Protease Deficient in Human DFNB8/10 Deafness, Is Critical for Cochlear Hair Cell Survival at the Onset of Hearing. Journal of Biological Chemistry, 2011, 286, 17383-17397.	3.4	71
24	Efficient and specific transduction of cochlear supporting cells by adeno-associated virus serotype 5. Neuroscience Letters, 2008, 442, 134-139.	2.1	31
25	From Cochlear Cell Death Pathways To New Pharmacological Therapies. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1006-1019.	2.4	8
26	FXYD6 Is a Novel Regulator of Na,K-ATPase Expressed in the Inner Ear. Journal of Biological Chemistry, 2007, 282, 7450-7456.	3.4	63
27	Inhibition of the c-Jun N-Terminal Kinase-Mediated Mitochondrial Cell Death Pathway Restores Auditory Function in Sound-Exposed Animals. Molecular Pharmacology, 2007, 71, 654-666.	2.3	127
28	A novel dual inhibitor of calpains and lipid peroxidation (BN82270) rescues the cochlea from sound trauma. Neuropharmacology, 2007, 52, 1426-1437.	4.1	34
29	Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hearing Research, 2007, 227, 19-27.	2.0	170
30	Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity. Hearing Research, 2007, 226, 168-177.	2.0	102
31	Macrophage contribution to the response of the rat organ of Corti to amikacin. Journal of Neuroscience Research, 2007, 85, 1970-1979.	2.9	62
32	Dopamine transporter is essential for the maintenance of spontaneous activity of auditory nerve neurones and their responsiveness to sound stimulation. Journal of Neurochemistry, 2006, 97, 190-200.	3.9	34
33	Caspase Inhibitors, but not c-Jun NH2-Terminal Kinase Inhibitor Treatment, Prevent Cisplatin-Induced Hearing Loss. Cancer Research, 2004, 64, 9217-9224.	0.9	188