List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3673923/publications.pdf Version: 2024-02-01

		13827	18075
220	17,183	67	120
papers	citations	h-index	g-index
227	227	227	19295
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metabolism, 2007, 6, 38-54.	7.2	996
2	Reduction of Macrophage Infiltration and Chemoattractant Gene Expression Changes in White Adipose Tissue of Morbidly Obese Subjects After Surgery-Induced Weight Loss. Diabetes, 2005, 54, 2277-2286.	0.3	992
3	Lipolysis and lipid mobilization in human adipose tissue. Progress in Lipid Research, 2009, 48, 275-297.	5.3	630
4	Weight loss regulates inflammationâ€related genes in white adipose tissue of obese subjects. FASEB Journal, 2004, 18, 1657-1669.	0.2	569
5	Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut, 2016, 65, 1202-1214.	6.1	494
6	Acquirement of Brown Fat Cell Features by Human White Adipocytes. Journal of Biological Chemistry, 2003, 278, 33370-33376.	1.6	396
7	Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biology, 2008, 9, R14.	13.9	372
8	Adipocyte Lipases and Defect of Lipolysis in Human Obesity. Diabetes, 2005, 54, 3190-3197.	0.3	329
9	Adipocyte lipolysis and insulin resistance. Biochimie, 2016, 125, 259-266.	1.3	311
10	Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacological Research, 2006, 53, 482-491.	3.1	285
11	Adipose Triglyceride Lipase and Hormone-Sensitive Lipase Protein Expression Is Decreased in the Obese Insulin-Resistant State. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2292-2299.	1.8	213
12	Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nature Reviews Endocrinology, 2021, 17, 276-295.	4.3	198
13	Lipolysis in lipid turnover, cancer cachexia, and obesity-induced insulin resistance. Trends in Endocrinology and Metabolism, 2014, 25, 255-262.	3.1	193
14	Coexistence of three β-adrenoceptor subtypes in white fat cells of various mammalian species. European Journal of Pharmacology, 1991, 199, 291-301.	1.7	188
15	Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. Journal of Lipid Research, 1999, 40, 2059-2065.	2.0	182
16	Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes. Journal of Biological Chemistry, 2009, 284, 18282-18291.	1.6	177
17	Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass. PLoS Biology, 2013, 11, e1001485.	2.6	173
18	Effect of aerobic training on plasma levels and subcutaneous abdominal adipose tissue gene expression of adiponectin, leptin, interleukin 6, and tumor necrosis factor α in obese women. Metabolism: Clinical and Experimental, 2006, 55, 1375-1381.	1.5	172

#	Article	IF	CITATIONS
19	β3-Adrenoceptors in the cardiovascular system. Trends in Pharmacological Sciences, 2000, 21, 426-431.	4.0	164
20	Macrophages and Adipocytes in Human Obesity. Diabetes, 2009, 58, 1558-1567.	0.3	160
21	Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. Journal of Clinical Investigation, 2012, 122, 4675-4679.	3.9	154
22	Adipocyte hormone-sensitive lipase: a major regulator of lipid metabolism. Proceedings of the Nutrition Society, 1996, 55, 93-109.	0.4	151
23	Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nature Medicine, 2015, 21, 610-618.	15.2	149
24	CXC Ligand 5 Is an Adipose-Tissue Derived Factor that Links Obesity to Insulin Resistance. Cell Metabolism, 2009, 9, 339-349.	7.2	148
25	In Vivo Regulation of Human Skeletal Muscle Gene Expression by Thyroid Hormone. Genome Research, 2002, 12, 281-291.	2.4	143
26	Pretreatment fasting plasma glucose and insulin modify dietary weight loss success: results from 3 randomized clinical trials. American Journal of Clinical Nutrition, 2017, 106, 499-505.	2.2	143
27	Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB Journal, 2005, 19, 1540-1542.	0.2	138
28	The case for strategic international alliances to harness nutritional genomics for public and personal health. British Journal of Nutrition, 2005, 94, 623-632.	1.2	137
29	Cdk4 promotes adipogenesis through PPARÎ ³ activation. Cell Metabolism, 2005, 2, 239-249.	7.2	136
30	WISP2 regulates preadipocyte commitment and PPARÎ ³ activation by BMP4. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2563-2568.	3.3	134
31	NF-κB is important for TNF-α-induced lipolysis in human adipocytes. Journal of Lipid Research, 2007, 48, 1069-1077.	2.0	133
32	Influence of Gender, Obesity, and Muscle Lipase Activity on Intramyocellular Lipids in Sedentary Individuals. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3440-3447.	1.8	127
33	Enhanced Expression of β3-Adrenoceptors in Cardiac Myocytes Attenuates Neurohormone-Induced Hypertrophic Remodeling Through Nitric Oxide Synthase. Circulation, 2014, 129, 451-462.	1.6	125
34	Immune Cell Toll-like Receptor 4 Mediates the Development of Obesity- and Endotoxemia-Associated Adipose Tissue Fibrosis. Cell Reports, 2014, 7, 1116-1129.	2.9	122
35	Effects of Different Hypocaloric Diets on Protein Secretion From Adipose Tissue of Obese Women. Diabetes, 2004, 53, 1966-1971.	0.3	120
36	Importance of TNFα and neutral lipases in human adipose tissue lipolysis. Trends in Endocrinology and Metabolism, 2006, 17, 314-320.	3.1	115

#	Article	IF	CITATIONS
37	Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1847-E1855.	1.8	110
38	White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Molecular Metabolism, 2016, 5, 352-365.	3.0	110
39	A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia, 2013, 56, 2524-2537.	2.9	109
40	[3H]Idazoxan binding at non-α2-adrenoceptors in rabbit adipocyte membranes. European Journal of Pharmacology, 1989, 159, 199-203.	1.7	105
41	Triiodothyronineâ€mediated upregulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB Journal, 2001, 15, 13-15.	0.2	105
42	Conversion from white to brown adipocytes: a strategy for the control of fat mass?. Trends in Endocrinology and Metabolism, 2003, 14, 439-441.	3.1	105
43	Worsening of Obesity and Metabolic Status Yields Similar Molecular Adaptations in Human Subcutaneous and Visceral Adipose Tissue: Decreased Metabolism and Increased Immune Response. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E73-E82.	1.8	105
44	Altered Skeletal Muscle Lipase Expression and Activity Contribute to Insulin Resistance in Humans. Diabetes, 2011, 60, 1734-1742.	0.3	103
45	Regulation of Human Adipocyte Gene Expression by Thyroid Hormone. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 630-634.	1.8	95
46	Plasma Levels and Adipose Tissue Messenger Ribonucleic Acid Expression of Retinol-Binding Protein 4 Are Reduced during Calorie Restriction in Obese Subjects but Are Not Related to Diet-Induced Changes in Insulin Sensitivity. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2330-2335.	1.8	89
47	Peroxisome Proliferator-Activated Receptor-α Control of Lipid and Glucose Metabolism in Human White Adipocytes. Endocrinology, 2010, 151, 123-133.	1.4	89
48	Adipose tissue lipolysis. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 377-381.	1.3	88
49	Hormone-sensitive lipase expression and activity in relation to lipolysis in human fat cells. Journal of Lipid Research, 1998, 39, 1688-1695.	2.0	88
50	Molecular Cloning, Genomic Organization, and Expression of a Testicular Isoform of Hormone-Sensitive Lipase. Genomics, 1996, 35, 441-447.	1.3	87
51	Adiponutrin: A New Gene Regulated by Energy Balance in Human Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2684-2689.	1.8	87
52	[3H]RX821002: a new tool for the identification of α2A-adrenoceptors. European Journal of Pharmacology, 1989, 167, 95-104.	1.7	86
53	Comparison of Hormone-Sensitive Lipase Activity in Visceral and Subcutaneous Human Adipose Tissue1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 4162-4166.	1.8	86
54	Effects of <i>TCF7L2</i> Polymorphisms on Obesity in European Populations. Obesity, 2008, 16, 476-482.	1.5	83

#	Article	IF	CITATIONS
55	Effects of Weight Reduction on the Regulation of Lipolysis in Adipocytes of Women with Upper-Body Obesity. Clinical Science, 1995, 89, 421-429.	1.8	82
56	Selective release of human adipocyte fatty acids according to molecular structure. Biochemical Journal, 1997, 324, 911-915.	1.7	82
57	Recruitment of brown fat and conversion of white into brown adipocytes: Strategies to fight the metabolic complications of obesity?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 372-376.	1.2	82
58	Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity. Scientific Reports, 2020, 10, 6489.	1.6	80
59	The Transcriptional Coactivator Peroxisome Proliferator Activated Receptor (PPAR)Â Coactivator-1Â and the Nuclear Receptor PPARÂ Control the Expression of Glycerol Kinase and Metabolism Genes Independently of PPARÂ Activation in Human White Adipocytes. Diabetes, 2007, 56, 2467-2475.	0.3	78
60	Exon–intron organization and chromosomal localization of the mouse monoglyceride lipase gene. Gene, 2001, 272, 11-18.	1.0	76
61	Adaptive Changes of the Insig1/SREBP1/SCD1 Set Point Help Adipose Tissue to Cope With Increased Storage Demands of Obesity. Diabetes, 2013, 62, 3697-3708.	0.3	76
62	Defective Natriuretic Peptide Receptor Signaling in Skeletal Muscle Links Obesity to Type 2 Diabetes. Diabetes, 2015, 64, 4033-4045.	0.3	76
63	Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes. Molecular Metabolism, 2018, 7, 35-44.	3.0	76
64	Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight, 2020, 5, .	2.3	72
65	Transcriptional Regulation of Adipocyte Hormone-Sensitive Lipase by Glucose. Diabetes, 2002, 51, 293-300.	0.3	71
66	Control of fatty acid and glycerol release in adipose tissue lipolysis. Comptes Rendus - Biologies, 2006, 329, 598-607.	0.1	71
67	The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Molecular Metabolism, 2014, 3, 834-847.	3.0	71
68	?-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human ?-adrenergic receptor. Cardiovascular Research, 2003, 59, 288-296.	1.8	70
69	Adiponectin Gene Expression and Plasma Values in Obese Women during Very-Low-Calorie Diet. Relationship with Cardiovascular Risk Factors and Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 756-760.	1.8	70
70	Lipolytic effects of conventional β 3 -adrenoceptor agonists and of CGP 12,177 in rat and human fat cells: preliminary pharmacological evidence for a putative β 4 -adrenoceptor. British Journal of Pharmacology, 1997, 122, 1244-1250.	2.7	69
71	Contribution of Energy Restriction and Macronutrient Composition to Changes in Adipose Tissue Gene Expression during Dietary Weight-Loss Programs in Obese Women. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4315-4322.	1.8	69
72	High-Fat Diet-Mediated Lipotoxicity and Insulin Resistance Is Related to Impaired Lipase Expression in Mouse Skeletal Muscle. Endocrinology, 2013, 154, 1444-1453.	1.4	69

#	Article	IF	CITATIONS
73	Perilipin 5 fine-tunes lipid oxidation to metabolic demand and protects against lipotoxicity in skeletal muscle. Scientific Reports, 2016, 6, 38310.	1.6	69
74	Adiponectin Gene Expression in Subcutaneous Adipose Tissue of Obese Women in Response to Short-Term Very Low Calorie Diet and Refeeding. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5881-5886.	1.8	67
75	Fat Oxidation before and after a High Fat Load in the Obese Insulin-Resistant State. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1462-1469.	1.8	66
76	Protein quantitative trait locus study in obesity during weight-loss identifies a leptin regulator. Nature Communications, 2017, 8, 2084.	5.8	66
77	Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis. Journal of Biological Chemistry, 2011, 286, 370-379.	1.6	65
78	Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance. Nature Medicine, 2013, 19, 217-226.	15.2	65
79	In vitro and ex vivo models of adipocytes. American Journal of Physiology - Cell Physiology, 2021, 320, C822-C841.	2.1	65
80	Endurance Exercise Training Up-Regulates Lipolytic Proteins and Reduces Triglyceride Content in Skeletal Muscle of Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4863-4871.	1.8	64
81	Caloric Restriction and Diet-Induced Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue in Women and Men with Obesity. Cell Reports, 2018, 22, 1079-1089.	2.9	63
82	Fatty acid specificity of hormone-sensitive lipase: implication in the selective hydrolysis of triacylglycerols. Journal of Lipid Research, 2001, 42, 2049-2057.	2.0	63
83	Genetic Polymorphisms and Weight Loss in Obesity: A Randomised Trial of Hypo-Energetic High- versus Low-Fat Diets. PLOS Clinical Trials, 2006, 1, e12.	3.5	62
84	TCF7L2 rs7903146–macronutrient interaction in obese individuals' responses to a 10-wk randomized hypoenergetic diet. American Journal of Clinical Nutrition, 2010, 91, 472-479.	2.2	62
85	High expression of monoamine oxidases in human white adipose tissue: evidence for their involvement in noradrenaline clearance. Biochemical Pharmacology, 1999, 58, 1735-1742.	2.0	61
86	Evidence for an Important Role of CIDEA in Human Cancer Cachexia. Cancer Research, 2008, 68, 9247-9254.	0.4	60
87	Dynamics of skeletal muscle lipid pools. Trends in Endocrinology and Metabolism, 2013, 24, 607-615.	3.1	60
88	Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake. American Journal of Clinical Nutrition, 2010, 92, 975-984.	2.2	59
89	Transcriptome profiling from adipose tissue during a low-calorie diet reveals predictors of weight and glycemic outcomes in obese, nondiabetic subjects. American Journal of Clinical Nutrition, 2017, 106, 736-746.	2.2	59
90	Understanding adipose tissue development from transgenic animal models. Journal of Lipid Research, 2002, 43, 835-860.	2.0	59

#	Article	IF	CITATIONS
91	Adipose Tissue Lipoprotein Lipase and Hormone-Sensitive Lipase. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2287-2292.	1.1	58
92	Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie, 2017, 136, 3-11.	1.3	57
93	[2] Regulation of hormone-sensitive lipase activity in adipose tissue. Methods in Enzymology, 1997, 286, 45-67.	0.4	55
94	In VivoEpinephrine-Mediated Regulation of Gene Expression in Human Skeletal Muscle. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2000-2014.	1.8	55
95	Regulation of adipose tissue lipolysis revisited. Proceedings of the Nutrition Society, 2009, 68, 350-360.	0.4	55
96	A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects. American Journal of Clinical Nutrition, 2011, 94, 1399-1409.	2.2	54
97	miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function. Molecular Metabolism, 2016, 5, 615-625.	3.0	54
98	Secretory products of guinea pig epicardial fat induce insulin resistance and impair primary adult rat cardiomyocyte function. Journal of Cellular and Molecular Medicine, 2011, 15, 2399-2410.	1.6	53
99	Hormone-sensitive lipase: sixty years later. Progress in Lipid Research, 2021, 82, 101084.	5.3	53
100	Hormone-sensitive Lipase Is a Cholesterol Esterase of the Intestinal Mucosa. Journal of Biological Chemistry, 2003, 278, 6510-6515.	1.6	52
101	Obesityâ€related Polymorphisms and Their Associations With the Ability to Regulate Fat Oxidation in Obese Europeans: The NUGENOB Study. Obesity, 2010, 18, 1369-1377.	1.5	52
102	Adipose Tissue Lipolysis and Hormone-Sensitive Lipase Expression during Very-Low-Calorie Diet in Obese Female Identical Twins1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 739-744.	1.8	51
103	Increase in Uncoupling Protein-2 mRNA Expression by BRL49653 and Bromopalmitate in Human Adipocytes. Biochemical and Biophysical Research Communications, 1999, 256, 138-141.	1.0	51
104	Effect of thyroid hormone on gene expression. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 377-381.	1.3	49
105	Determinants of Human Adipose Tissue Gene Expression: Impact of Diet, Sex, Metabolic Status, and Cis Genetic Regulation. PLoS Genetics, 2012, 8, e1002959.	1.5	48
106	α-Lipoic acid treatment increases mitochondrial biogenesis and promotes beige adipose features in subcutaneous adipocytes from overweight/obese subjects. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 273-281.	1.2	48
107	Understanding adipose tissue development from transgenic animal models. Journal of Lipid Research, 2002, 43, 835-60.	2.0	48
108	Uncoupling Protein-2 Messenger Ribonucleic Acid Expression During Very-Low-Calorie Diet in Obese Premenopausal Women. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 2450-2453.	1.8	47

#	Article	IF	CITATIONS
109	The role of neutral lipases in human adipose tissue lipolysis. Current Opinion in Lipidology, 2007, 18, 246-250.	1.2	47
110	Weight Loss Improves the Adipogenic Capacity of Human Preadipocytes and Modulates Their Secretory Profile. Diabetes, 2013, 62, 1990-1995.	0.3	47
111	The Effects of Increasing Serum Calcitriol on Energy and Fat Metabolism and Gene Expression*. Obesity, 2006, 14, 1739-1746.	1.5	46
112	Genotype-by-nutrient interactions assessed in European obese women. European Journal of Nutrition, 2006, 45, 454-462.	1.8	46
113	Cyclin G2 Regulates Adipogenesis through PPARÎ ³ Coactivation. Endocrinology, 2010, 151, 5247-5254.	1.4	46
114	Species-specific alternative splicing generates a catalytically inactive form of human hormone-sensitive lipase. Biochemical Journal, 1997, 328, 137-143.	1.7	45
115	Adipose Gene Expression Prior to Weight Loss Can Differentiate and Weakly Predict Dietary Responders. PLoS ONE, 2007, 2, e1344.	1.1	45
116	Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58. Journal of Lipid Research, 2012, 53, 839-848.	2.0	45
117	Effects of 3 diets with various calcium contents on 24-h energy expenditure, fat oxidation, and adipose tissue message RNA expression of lipid metabolism–related proteins. American Journal of Clinical Nutrition, 2005, 82, 1244-1252.	2.2	43
118	In vitro brown and "briteâ€∤"beige―adipogenesis: Human cellular models and molecular aspects. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 905-914.	1.2	43
119	Characterization of the promoter of human adipocyte hormone-sensitive lipase. Biochemical Journal, 1997, 328, 453-461.	1.7	42
120	Chronic TNFα and cAMP preâ€treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis. FEBS Letters, 2009, 583, 3045-3049.	1.3	42
121	Regiocontrolled syntheses of FAHFAs and LC-MS/MS differentiation of regioisomers. Organic and Biomolecular Chemistry, 2016, 14, 9012-9020.	1.5	42
122	Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nature Metabolism, 2019, 1, 133-146.	5.1	42
123	Diabetes, Insulin Secretion, and the Pancreatic Beta-Cell Mitochondrion. New England Journal of Medicine, 2001, 345, 1772-1774.	13.9	41
124	A "futile cycle―induced by thiazolidinediones in human adipose tissue?. Nature Medicine, 2003, 9, 811-812.	15.2	41
125	System Model Network for Adipose Tissue Signatures Related to Weight Changes in Response to Calorie Restriction and Subsequent Weight Maintenance. PLoS Computational Biology, 2015, 11, e1004047.	1.5	41
126	In and Out: Adipose Tissue Lipid Turnover in Obesity and Dyslipidemia. Cell Metabolism, 2011, 14, 569-570.	7.2	39

#	Article	IF	CITATIONS
127	Let-7i-5p represses brite adipocyte function in mice and humans. Scientific Reports, 2016, 6, 28613.	1.6	39
128	Inhibition of hormone-sensitive lipase gene expression by cAMP and phorbol esters in 3T3-F442A and BFC-1 adipocytes. Biochemical Journal, 1996, 318, 1057-1063.	1.7	38
129	Analyses of single nucleotide polymorphisms in selected nutrient-sensitive genes in weight-regain prevention: the DIOGENES study. American Journal of Clinical Nutrition, 2012, 95, 1254-1260.	2.2	38
130	3D Adipose Tissue Culture Links the Organotypic Microenvironment to Improved Adipogenesis. Advanced Science, 2021, 8, e2100106.	5.6	37
131	TFAP2B Influences the Effect of Dietary Fat on Weight Loss under Energy Restriction. PLoS ONE, 2012, 7, e43212.	1.1	37
132	A Novel Hormone-sensitive Lipase Isoform Expressed in Pancreatic β-Cells. Journal of Biological Chemistry, 2004, 279, 3828-3836.	1.6	36
133	Enhanced Glucose Metabolism Is Preserved in Cultured Primary Myotubes From Obese Donors in Response to Exercise Training. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 3739-3747.	1.8	36
134	β3-Adrenoceptor Control the Cystic Fibrosis Transmembrane Conductance Regulator through a cAMP/Protein Kinase A-independent Pathway. Journal of Biological Chemistry, 1999, 274, 6107-6113.	1.6	35
135	Characterization of a Novel Testicular Form of Human Hormone-Sensitive Lipase. Biochemical and Biophysical Research Communications, 2002, 291, 286-290.	1.0	35
136	Norepinephrine Induces Lipolysis in β1/β2/β3-Adrenoceptor Knockout Mice. Molecular Pharmacology, 2005, 68, 793-799.	1.0	35
137	Subcutaneous Adipose Tissue and Systemic Inflammation Are Associated With Peripheral but Not Hepatic Insulin Resistance in Humans. Diabetes, 2019, 68, 2247-2258.	0.3	35
138	Messenger RNAs encoding lipoprotein lipase, fatty acid synthase and hormone-sensitive lipase in the adipose tissue of underfed-refed ewes and cows. Reproduction, Nutrition, Development, 1998, 38, 297-307.	1.9	34
139	Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis. Journal of Lipid Research, 2003, 44, 154-163.	2.0	34
140	Sequence similarities between hormone-sensitive lipase and five prokaryotic enzymes. Trends in Biochemical Sciences, 1993, 18, 466-467.	3.7	33
141	Profiling of adipokines secreted from human subcutaneous adipose tissue in response to PPAR agonists. Biochemical and Biophysical Research Communications, 2007, 358, 897-902.	1.0	33
142	Natriuretic peptides promote glucose uptake in a cGMP-dependent manner in human adipocytes. Scientific Reports, 2018, 8, 1097.	1.6	33
143	Testis Expression of Hormone-sensitive Lipase Is Conferred by a Specific Promoter That Contains Four Regions Binding Testicular Nuclear Proteins. Journal of Biological Chemistry, 1999, 274, 9327-9334.	1.6	32
144	Regulation of Hormone-Sensitive Lipase Expression by Glucose in 3T3-F442A Adipocytes. Biochemical and Biophysical Research Communications, 1998, 245, 510-513.	1.0	31

#	Article	IF	CITATIONS
145	Discrimination between α2-adrenoceptors and [3H]idazoxan-labelled non-adrenergic sites in rabbit white fat cells. European Journal of Pharmacology, 1990, 188, 261-272.	2.7	30
146	Fatty acids from fat cell lipolysis do not activate an inflammatory response but are stored as triacylglycerols in adipose tissue macrophages. Diabetologia, 2015, 58, 2627-2636.	2.9	30
147	Apolipoprotein M: a novel adipokine decreasing with obesity and upregulated by calorie restriction. American Journal of Clinical Nutrition, 2019, 109, 1499-1510.	2.2	30
148	cAMP-dependent protein kinase activation mediated by β3-adrenergic receptors parallels lipolysis in rat adipocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 349-352.	1.9	29
149	The transcriptional co-activator PGC-1α up regulates apelin in human and mouse adipocytes. Regulatory Peptides, 2008, 150, 33-37.	1.9	29
150	Effect of the interaction between diet composition and the PPM1K genetic variant on insulin resistance and Î ² cell function markers during weight loss: results from the Nutrient Gene Interactions in Human Obesity: implications for dietary guidelines (NUGENOB) randomized trial. American Journal of Clinical Nutrition, 2017, 106, 902-908.	2.2	29
151	Testis Hormone-sensitive Lipase Expression in Spermatids Is Governed by a Short Promoter in Transgenic Mice. Journal of Biological Chemistry, 2001, 276, 5109-5115.	1.6	28
152	Gene expression profiling of human skeletal muscle in response to stabilized weight loss. American Journal of Clinical Nutrition, 2008, 88, 125-132.	2.2	28
153	Adipose Tissue Secretion and Expression of Adipocyte-Produced and Stromavascular Fraction-Produced Adipokines Vary during Multiple Phases of Weight-Reducing Dietary Intervention in Obese Women. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1176-E1181.	1.8	28
154	Soluble CD163 Is Associated With CD163 mRNA Expression in Adipose Tissue and With Insulin Sensitivity in Steady-State Condition but Not in Response to Calorie Restriction. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E528-E535.	1.8	28
155	Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1194-1201.	1.2	28
156	Molecular Biomarkers for Weight Control in Obese Individuals Subjected to a Multiphase Dietary Intervention. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2751-2761.	1.8	28
157	Reappraisal of the optimal fasting time for insulin tolerance tests in mice. Molecular Metabolism, 2020, 42, 101058.	3.0	28
158	The negative inotropic action of catecholamines: Role of β ₃ -adrenoceptors. Canadian Journal of Physiology and Pharmacology, 2000, 78, 681-690.	0.7	27
159	The Testicular Form of Hormone-sensitive Lipase HSLtes Confers Rescue of Male Infertility in HSL-deficient Mice. Journal of Biological Chemistry, 2004, 279, 42875-42880.	1.6	27
160	MAFB as a novel regulator of human adipose tissue inflammation. Diabetologia, 2015, 58, 2115-2123.	2.9	27
161	Atrial Natriuretic Peptide Orchestrates a Coordinated Physiological Response to Fuel Non-shivering Thermogenesis. Cell Reports, 2020, 32, 108075.	2.9	27
162	Imidazolinic radioligands for the identification of hamster adipocyte α2-adrenoceptors. European Journal of Pharmacology, 1989, 171, 145-157.	1.7	26

#	Article	IF	CITATIONS
163	Skeletal Muscle Lipase Content and Activity in Obesity and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 5449-5453.	1.8	26
164	Identification of α2-adrenoceptors and non-adrenergic idazoxan binding sites in rabbit colon epithelial cells. European Journal of Pharmacology, 1990, 191, 59-68.	1.7	25
165	Human Hormone-Sensitive Lipase: Expression and Large-Scale Purification from a Baculovirus/Insect Cell System. Protein Expression and Purification, 1998, 12, 93-99.	0.6	25
166	Genetic Association and Gene Expression Analysis Identify <i>FGFR1</i> as a New Susceptibility Gene for Human Obesity. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E962-E966.	1.8	25
167	Genome-wide gene-based analyses of weight loss interventions identify a potential role for NKX6.3 in metabolism. Nature Communications, 2019, 10, 540.	5.8	25
168	A role for hormone-sensitive lipase in the selective mobilization of adipose tissue fatty acids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1532, 88-96.	1.2	23
169	ApoB100-LDL Acts as a Metabolic Signal from Liver to Peripheral Fat Causing Inhibition of Lipolysis in Adipocytes. PLoS ONE, 2008, 3, e3771.	1.1	23
170	Metabolic syndrome, circulating RBP4, testosterone, and SHBG predict weight regain at 6 months after weight loss in men. Obesity, 2013, 21, 1997-2006.	1.5	23
171	Effect of hyperinsulinemia and very-low-calorie diet on interstitial cytokine levels in subcutaneous adipose tissue of obese women. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1154-E1161.	1.8	22
172	Non-adrenergic sites for imidazolines are not directly involved in the α2-adrenergic antilipolytic effect of UK 14304 in rat adipocytes. Biochemical Pharmacology, 1990, 40, 437-445.	2.0	21
173	Lack of skeletal muscle uncoupling protein 2 and 3 mRNA induction during fasting in type-2 diabetic subjects. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E830-E837.	1.8	21
174	Adipose Tissue Lipolysis Revisited (Again!): Lactate Involvement in Insulin Antilipolytic Action. Cell Metabolism, 2010, 11, 242-243.	7.2	21
175	The Presence of a Catalytically Inactive Form of Hormone-Sensitive Lipase Is Associated With Decreased Lipolysis in Abdominal Subcutaneous Adipose Tissue of Obese Subjects. Diabetes, 2003, 52, 1417-1422.	0.3	20
176	Secretion of adiponectin multimeric complexes from adipose tissue explants is not modified by very low calorie diet. European Journal of Endocrinology, 2009, 160, 585-592.	1.9	19
177	Multiple effects of a short-term dexamethasone treatment in human skeletal muscle and adipose tissue. Physiological Genomics, 2012, 44, 141-151.	1.0	19
178	Hormone-sensitive lipase: structure, function, evolution and overproduction in insect cells using the baculovirus expression system. Protein Engineering, Design and Selection, 1994, 7, 537-541.	1.0	18
179	Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes. Biochemical and Biophysical Research Communications, 2015, 460, 684-690.	1.0	17
180	Integrative phenotyping of glycemic responders upon clinical weight loss using multi-omics. Scientific Reports, 2020, 10, 9236.	1.6	17

#	Article	IF	CITATIONS
181	On the presence of a putative fourth \hat{l}^2 -adrenoceptor in human adipose tissue. Trends in Pharmacological Sciences, 1998, 19, 164-165.	4.0	16
182	Analysis of the psychrotolerant property of hormone-sensitive lipase through site-directed mutagenesis. Protein Engineering, Design and Selection, 2000, 13, 711-717.	1.0	16
183	GO/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle. Molecular Metabolism, 2016, 5, 527-537.	3.0	15
184	OBEDIS Core Variables Project: European Expert Guidelines on a Minimal Core Set of Variables to Include in Randomized, Controlled Clinical Trials of Obesity Interventions. Obesity Facts, 2020, 13, 1-28.	1.6	15
185	The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes. Nature Communications, 2021, 12, 7037.	5.8	15
186	Cellular aspects of fuel mobilization and selection in white adipocytes. Proceedings of the Nutrition Society, 1995, 54, 49-63.	0.4	14
187	Influence of SNPs in nutrient-sensitive candidate genes and gene–diet interactions on blood lipids: the DiOGenes study. British Journal of Nutrition, 2013, 110, 790-796.	1.2	14
188	Hormone-Sensitive Lipase Deficiency in Humans. Cell Metabolism, 2014, 20, 199-201.	7.2	13
189	Comparison of Early (2 Days) and Later (28 Days) Response of Adipose Tissue to Very Low-Calorie Diet in Obese Women. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 5021-5029.	1.8	13
190	Niacin induces miR-502-3p expression which impairs insulin sensitivity in human adipocytes. International Journal of Obesity, 2019, 43, 1485-1490.	1.6	13
191	Differential Mitochondrial Gene Expression in Adipose Tissue Following Weight Loss Induced by Diet or Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1312-1324.	1.8	13
192	Catecholamine and insulin control of lipolysis in subcutaneous adipose tissue during long-term diet-induced weight loss in obese women. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E226-E232.	1.8	11
193	The long noncoding RNA ADIPINT regulates human adipocyte metabolism via pyruvate carboxylase. Nature Communications, 2022, 13, .	5.8	11
194	Adipose Tissue CIDEA Is Associated, Independently of Weight Variation, to Change in Insulin Resistance during a Longitudinal Weight Control Dietary Program in Obese Individuals. PLoS ONE, 2014, 9, e98707.	1.1	10
195	Imidazoline Binding Sites in Fat Cells. American Journal of Hypertension, 1992, 5, 72S-79S.	1.0	9
196	Title is missing!. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 377-381.	1.3	9
197	CIDEA interacts with liver X receptors in white fat cells. FEBS Letters, 2011, 585, 744-748.	1.3	9
198	Dietary Factors Impact on the Association between CTSS Variants and Obesity Related Traits. PLoS ONE, 2012, 7, e40394.	1.1	9

12

#	Article	IF	CITATIONS
199	Influence of lipolysis and fatty acid availability on fuel selection during exercise. Journal of Physiology and Biochemistry, 2014, 70, 583-91.	1.3	9
200	Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in dietâ€induced obese mice. Obesity, 2014, 22, 1653-1661.	1.5	9
201	FADS1 genotype is distinguished by human subcutaneous adipose tissue fatty acids, but not inflammatory gene expression. International Journal of Obesity, 2019, 43, 1539-1548.	1.6	9
202	Uncoupling Protein-2 Messenger Ribonucleic Acid Expression During Very-Low-Calorie Diet in Obese Premenopausal Women. , 0, .		9
203	Peripheral cardiovascular actions of SR 58611 A, a beta 3â€adrenoceptor agonist, in the dog: lack of central effect. Fundamental and Clinical Pharmacology, 1999, 13, 180-186.	1.0	8
204	Transcription of the human uncoupling protein 3 gene is governed by a complex interplay between the promoter and intronic sequences. Diabetologia, 2009, 52, 1638-1646.	2.9	8
205	Change in Proportional Protein Intake in a 10-Week Energy-Restricted Low- or High-Fat Diet, in Relation to Changes in Body Size and Metabolic Factors. Obesity Facts, 2013, 6, 217-227.	1.6	8
206	Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge. PLoS Computational Biology, 2021, 17, e1008852.	1.5	8
207	Network Analyses Reveal Negative Link Between Changes in Adipose Tissue GDF15 and BMI During Dietary-induced Weight Loss. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e130-e142.	1.8	7
208	Hidden Variant of ChREBP in Fat Links Lipogenesis to Insulin Sensitivity. Cell Metabolism, 2012, 15, 795-797.	7.2	6
209	Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. Journal of Physiology and Biochemistry, 2019, 75, 253-262.	1.3	6
210	Triacylglycerol metabolism in adipose tissue. Advances in Molecular and Cell Biology, 2003, 33, 337-356.	0.1	5
211	Adipocyte heterogeneity revealed by spatial transcriptomics of human adipose tissue: Painting and more. Cell Metabolism, 2021, 33, 1721-1722.	7.2	5
212	Adipose Tissue: Development, Anatomy and Functions. , 0, , 79-108.		4
213	Coordinating Effect of VEGFC and Oleic Acid Participates to Tumor Lymphangiogenesis. Cancers, 2021, 13, 2851.	1.7	4
214	ChREBP \hat{I}^2 is dispensable for the control of glucose homeostasis and energy balance. JCI Insight, 2022, 7, .	2.3	4
215	Adipose tissue lipases and lipolysis. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2013, 60, 26-28.	0.8	2
216	Metabolic and cardiovascular adaptations to an 8-wk lifestyle weight loss intervention in younger and older obese men. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E325-E337.	1.8	2

#	Article	IF	CITATIONS
217	Comment on: Sitnick et al. Skeletal Muscle Triacylglycerol Hydrolysis Does Not Influence Metabolic Complications of Obesity. Diabetes 2013;62:3350-3361. Diabetes, 2013, 62, e29-e29.	0.3	1
218	Adipose Tissue Lipolysis. , 2013, , 141-157.		0
219	Nutrients and Gene Expression in Type 2 Diabetes. , 2020, , 441-445.		0
220	Interaction of Diet/Lifestyle Intervention and TCF7L2 Genotype on Glycemic Control and Adiposity among Overweight or Obese Adults: Big Data from Seven Randomized Controlled Trials Worldwide. Health Data Science, 2021, 2021, .	1.1	0