Nathan Geraldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3673741/publications.pdf

Version: 2024-02-01

304602 302012 1,737 54 22 39 h-index citations g-index papers 57 57 57 2304 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Projecting coral responses to intensifying marine heatwaves under ocean acidification. Global Change Biology, 2022, 28, 1753-1765.	4.2	32
2	Fingerprinting Arctic and North Atlantic Macroalgae with eDNA – Application and perspectives. Environmental DNA, 2022, 4, 385-401.	3.1	12
3	Oyster abundance on subtidal reefs depends on predation, location, and experimental duration. Ecosphere, 2022, 13, .	1.0	6
4	eDNA Reveals the Associated Metazoan Diversity of Mediterranean Seagrass Sediments. Diversity, 2022, 14, 549.	0.7	6
5	Phylogeographic Analysis Suggests a Recent Population Bottleneck in the Rare Red Sea Tridacna squamosina. Frontiers in Marine Science, 2021, 8, .	1.2	O
6	Flexible Hall sensor made of laser-scribed graphene. Npj Flexible Electronics, 2021, 5, .	5.1	14
7	Climateâ€driven impacts of exotic species on marine ecosystems. Global Ecology and Biogeography, 2021, 30, 1043-1055.	2.7	16
8	Seagrass (<i>Halophila stipulacea</i>) invasion enhances carbon sequestration in the Mediterranean Sea. Global Change Biology, 2021, 27, 2592-2607.	4.2	22
9	Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 2021, 263, 109175.	1.9	96
10	Testing angular velocity as a new metric for metabolic demands of slow-moving marine fauna: a case study with Giant spider conchs Lambis truncata. Animal Biotelemetry, $2021, 9, .$	0.8	1
11	Integrating environmental variability to broaden the research on coral responses to future ocean conditions. Global Change Biology, 2021, 27, 5532-5546.	4.2	23
12	Estimates for energy expenditure in freeâ€living animals using acceleration proxies: A reappraisal. Journal of Animal Ecology, 2020, 89, 161-172.	1.3	148
13	Performance of extraction methods for extracellular DNA from sediments across marine habitats. Environmental DNA, 2020, 2, 91-98.	3.1	8
14	Ecological effects of nonâ€native species in marine ecosystems relate to coâ€occurring anthropogenic pressures. Global Change Biology, 2020, 26, 1248-1258.	4.2	20
15	Environmental <scp>DNA</scp> identifies marine macrophyte contributions to Blue Carbon sediments. Limnology and Oceanography, 2020, 65, 3139-3149.	1.6	35
16	Cellular network Marine Sensor Buoy. , 2020, , .		5
17	A framework for experimental scenarios of global change in marine systems using coral reefs as a case study. Royal Society Open Science, 2020, 7, 191118.	1.1	7
18	Laserâ€Printed, Flexible Graphene Pressure Sensors. Global Challenges, 2020, 4, 2000001.	1.8	34

#	Article	IF	Citations
19	Global determinants of prey naiveté to exotic predators. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192978.	1.2	53
20	Translational Molecular Ecology in practice: Linking DNA-based methods to actionable marine environmental management. Science of the Total Environment, 2020, 744, 140780.	3.9	24
21	Reply to: Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species. Nature Ecology and Evolution, 2020, 4, 315-317.	3.4	1
22	A DNA miniâ€barcode for marine macrophytes. Molecular Ecology Resources, 2020, 20, 920-935.	2.2	25
23	The Small Giant Clam, Tridacna maxima Exhibits Minimal Population Genetic Structure in the Red Sea and Genetic Differentiation From the Gulf of Aden. Frontiers in Marine Science, 2020, 7, .	1.2	8
24	Wearable multifunctional printed graphene sensors. Npj Flexible Electronics, 2019, 3, .	5.1	84
25	Important contribution of macroalgae to oceanic carbon sequestration. Nature Geoscience, 2019, 12, 748-754.	5.4	141
26	Flexible tag design for semi-continuous wireless data acquisition from marine animals. Flexible and Printed Electronics, 2019, 4, 035006.	1.5	7
27	Noninvasive Featherlight Wearable Compliant "Marine Skin†Standalone Multisensory System for Deepâ€Sea Environmental Monitoring. Small, 2019, 15, e1804385.	5.2	49
28	Climate Indices, Water Temperature, and Fishing Predict Broad Scale Variation in Fishes on Temperate Reefs. Frontiers in Marine Science, 2019, 6, .	1.2	13
29	Fingerprinting Blue Carbon: Rationale and Tools to Determine the Source of Organic Carbon in Marine Depositional Environments. Frontiers in Marine Science, 2019, 6, .	1.2	75
30	Are the ecological effects of the "worst―marine invasive species linked with scientific and media attention?. PLoS ONE, 2019, 14, e0215691.	1.1	5
31	Role of carbonate burial in Blue Carbon budgets. Nature Communications, 2019, 10, 1106.	5.8	105
32	Methodâ€dependent influence of environmental variables on reef fish assemblages when comparing trap and video surveys. Marine Ecology, 2019, 40, e12538.	0.4	3
33	Global ecological impacts of marine exotic species. Nature Ecology and Evolution, 2019, 3, 787-800.	3.4	128
34	Flexible conductivity, temperature, and depth sensor for marine environment monitoring. , 2019, , .		6
35	Compliant lightweight non-invasive standalone "Marine Skin―tagging system. Npj Flexible Electronics, 2018, 2, .	5.1	50
36	Flexible and Biofouling Independent Salinity Sensor. Advanced Materials Interfaces, 2018, 5, 1801110.	1.9	29

#	Article	IF	CITATIONS
37	Tunable, Flexible Composite Magnets for Marine Monitoring Applications. Advanced Engineering Materials, 2018, 20, 1800229.	1.6	17
38	Substratum type and conspecific density as drivers of mussel patch formation. Journal of Sea Research, 2017, 121, 24-32.	0.6	15
39	Aggregations of brittle stars can perform similar ecological roles as mussel reefs. Marine Ecology - Progress Series, 2017, 563, 157-167.	0.9	14
40	Comparing relative abundance, lengths, and habitat of temperate reef fishes using simultaneous underwater visual census, video, and trap sampling. Marine Ecology - Progress Series, 2017, 574, 141-155.	0.9	32
41	Biological activity exceeds biogenic structure in influencing sediment nitrogen cycling in experimental oyster reefs. Marine Ecology - Progress Series, 2016, 560, 173-183.	0.9	26
42	Prey size structure diminishes cascading effects by increasing interference competition and predation among prey. Ecology, 2015, 96, 2533-2543.	1.5	9
43	Artificial substrates enhance non-native macroalga and N2 production. Biological Invasions, 2014, 16, 1819-1831.	1.2	18
44	When a trap is not a trap: converging entry and exit rates and their effect on trap saturation of black sea bass (Centropristis striata). ICES Journal of Marine Science, 2013, 70, 873-882.	1.2	28
45	Oyster-mediated benthic-pelagic coupling modifies nitrogen pools and processes. Marine Ecology - Progress Series, 2013, 493, 23-30.	0.9	66
46	Restricting Prey Dispersal Can Overestimate the Importance of Predation in Trophic Cascades. PLoS ONE, 2013, 8, e55100.	1.1	17
47	Addition of juvenile oysters fails to enhance oyster reef development in Pamlico Sound. Marine Ecology - Progress Series, 2013, 480, 119-129.	0.9	32
48	Preference for feeding at habitat edges declines among juvenile blue crabs as oyster reef patchiness increases and predation risk grows. Marine Ecology - Progress Series, 2012, 466, 145-153.	0.9	18
49	Subtle changes in prey foraging behavior have Âcascading effects in a shallow estuary. Marine Ecology - Progress Series, 2011, 427, 51-58.	0.9	15
50	How small-scale variation in oyster reef patchiness influences predation on bivalves. Marine Ecology - Progress Series, 2011, 429, 87-91.	0.9	11
51	Enhancing the Potential for Population Recovery: Restoration Options for Bay Scallop Populations, <i> Argopecten irradians concentricus </i> , in North Carolina. Journal of Shellfish Research, 2009, 28, 477-489.	0.3	15
52	Habitat effects on American lobster (<i>Homarus americanus</i>) movement and density: insights from georeferenced trap arrays, seabed mapping, and tagging. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 460-470.	0.7	23
53	Can habitat restoration be redundant? Response of mobile fishes and crustaceans to oyster reef restoration in marsh tidal creeks. Marine Ecology - Progress Series, 2009, 389, 171-180.	0.9	67
54	Evaluating local population dynamics of the American lobster,Homarus americanus,with trapâ€based markâ€recapture methods and seabed mapping. New Zealand Journal of Marine and Freshwater Research, 2005, 39, 1253-1276.	0.8	18