
Hongxia Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3673516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exposure to GenX and Its Novel Analogs Disrupts Hepatic Bile Acid Metabolism in Male Mice. Environmental Science & Technology, 2022, 56, 6133-6143.	4.6	38
2	Dioxin-like polychlorinated biphenyl 126 (PCB126) disrupts gut microbiota-host metabolic dysfunction in mice via aryl hydrocarbon receptor activation. Ecotoxicology and Environmental Safety, 2022, 236, 113448.	2.9	6
3	Perfluorooctanoic acid (PFOA) exposure induces splenic atrophy via overactivation of macrophages in male mice. Journal of Hazardous Materials, 2021, 407, 124862.	6.5	13
4	Chronic exposure to PFO4DA and PFO5DoDA, two perfluoroalkyl ether carboxylic acids (PFECAs), suppresses hepatic stress signals and disturbs glucose and lipid metabolism in male mice. Journal of Hazardous Materials, 2021, 411, 124963.	6.5	27
5	Low-dose PCB126 exposure disrupts cardiac metabolism and causes hypertrophy and fibrosis in mice. Environmental Pollution, 2021, 290, 118079.	3.7	10
6	The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary. Marine Life Science and Technology, 2020, 2, 87-96.	1.8	24
7	Per- and polyfluoroalkyl substances (PFASs) in blood of captive Siberian tigers in China: Occurrence and associations with biochemical parameters. Environmental Pollution, 2020, 265, 114805.	3.7	20
8	Accumulation, Biotransformation, and Endocrine Disruption Effects of Fluorotelomer Surfactant Mixtures on Zebrafish. Chemical Research in Toxicology, 2019, 32, 1432-1440.	1.7	25
9	Per- and polyfluoroalkyl substances (PFASs) in the blood of two colobine monkey species from China: Occurrence and exposure pathways. Science of the Total Environment, 2019, 674, 524-531.	3.9	18
10	Enrichment culture of electroactive microorganisms with high magnetic susceptibility enhances the performance of microbial fuel cells. Bioelectrochemistry, 2018, 121, 65-73.	2.4	11
11	Occurrence and Tissue Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids and Legacy Per/Polyfluoroalkyl Substances in Black-Spotted Frog (<i>Pelophylax nigromaculatus</i>). Environmental Science & Technology, 2018, 52, 982-990.	4.6	143
12	Subchronic Hepatotoxicity Effects of 6:2 Chlorinated Polyfluorinated Ether Sulfonate (6:2 Cl-PFESA), a Novel Perfluorooctanesulfonate (PFOS) Alternative, on Adult Male Mice. Environmental Science & Technology, 2018, 52, 12809-12818.	4.6	99
13	Worldwide Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids in Surface Water. Environmental Science & Technology, 2018, 52, 7621-7629.	4.6	367
14	Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment. Environmental Pollution, 2018, 241, 684-691.	3.7	54
15	High perfluorooctanoic acid exposure induces autophagy blockage and disturbs intracellular vesicle fusion in the liver. Archives of Toxicology, 2017, 91, 247-258.	1.9	12
16	Gestational and lactational exposure to di-isobutyl phthalate via diet in maternal mice decreases testosterone levels in male offspring. Chemosphere, 2017, 172, 260-267.	4.2	26
17	Spatial variation in bacterial community in natural wetlandâ€riverâ€sea ecosystems. Journal of Basic Microbiology, 2017, 57, 536-546.	1.8	33
18	Stimulation of long-term ammonium nitrogen deposition on methanogenesis by Methanocellaceae in a coastal wetland. Science of the Total Environment, 2017, 595, 337-343.	3.9	42

Hongxia Zhang

#	Article	IF	CITATIONS
19	Perfluorooctanoic acid exposure disturbs glucose metabolism in mouse liver. Toxicology and Applied Pharmacology, 2017, 335, 41-48.	1.3	36
20	Dietary exposure to di-isobutyl phthalate increases urinary 5-methyl-2′-deoxycytidine level and affects reproductive function in adult male mice. Journal of Environmental Sciences, 2017, 61, 14-23.	3.2	16
21	First Report on the Occurrence and Bioaccumulation of Hexafluoropropylene Oxide Trimer Acid: An Emerging Concern. Environmental Science & Technology, 2017, 51, 9553-9560.	4.6	186
22	RNAâ€sequencing analysis reveals the hepatotoxic mechanism of perfluoroalkyl alternatives, HFPO2 and HFPO4, following exposure in mice. Journal of Applied Toxicology, 2017, 37, 436-444.	1.4	58
23	Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line. Journal of Hazardous Materials, 2016, 313, 18-28.	6.5	17
24	Zebrafish reproductive toxicity induced by chronic perfluorononanoate exposure. Aquatic Toxicology, 2016, 175, 269-276.	1.9	45
25	Gestational and lactational exposure to bisphenol AF in maternal rats increases testosterone levels in 23-day-old male offspring. Chemosphere, 2016, 163, 552-561.	4.2	36
26	Associations of urinary 5-methyl-2′-deoxycytidine and 5-hydroxymethyl-2′-deoxycytidine with phthalate exposure and semen quality in 562 Chinese adult men. Environment International, 2016, 94, 583-590.	4.8	15
27	Activation of peroxisome proliferator-activated receptor α ameliorates perfluorododecanoic acid-induced production of reactive oxygen species in rat liver. Archives of Toxicology, 2016, 90, 1383-1397.	1.9	13
28	Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture. Frontiers in Microbiology, 2015, 6, 941.	1.5	43
29	Proteomic analysis of cell proliferation in a human hepatic cell line (HL-7702) induced by perfluorooctane sulfonate using iTRAQ. Journal of Hazardous Materials, 2015, 299, 361-370.	6.5	23
30	Perfluorooctanoic acid exposure induces endoplasmic reticulum stress in the liver and its effects are ameliorated by 4-phenylbutyrate. Free Radical Biology and Medicine, 2015, 87, 300-311.	1.3	36
31	Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice. Scientific Reports, 2015, 5, 11029.	1.6	62
32	Association between phthalate metabolites and biomarkers of reproductive function in 1066 Chinese men of reproductive age. Journal of Hazardous Materials, 2015, 300, 729-736.	6.5	62
33	Proteomic Analysis of Mouse Testis Reveals Perfluorooctanoic Acid-Induced Reproductive Dysfunction via Direct Disturbance of Testicular Steroidogenic Machinery. Journal of Proteome Research, 2014, 13, 3370-3385.	1.8	85
34	Phosphoproteome analysis reveals an important role for glycogen synthase kinase-3 in perfluorododecanoic acid-induced rat liver toxicity. Toxicology Letters, 2013, 218, 61-69.	0.4	13
35	Testicular phosphoproteome in perfluorododecanoic acid-exposed rats. Toxicology Letters, 2013, 221, 91-101.	0.4	14
36	Biological Responses to Perfluorododecanoic Acid Exposure in Rat Kidneys as Determined by Integrated Proteomic and Metabonomic Studies. PLoS ONE, 2011, 6, e20862.	1.1	33

#	Article	IF	CITATIONS
37	The effect of perfluorododecanonic acid on endocrine status, sex hormones and expression of steroidogenic genes in pubertal female rats. Reproductive Toxicology, 2009, 27, 352-359.	1.3	49
38	Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid. Toxicology and Applied Pharmacology, 2008, 227, 16-25.	1.3	68