Francesco Ramirez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3673507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathophysiology and Therapeutics of Thoracic Aortic Aneurysm in Marfan Syndrome. Biomolecules, 2022, 12, 128.	4.0	14
2	AT1R blockade together with AT2R stimulation prevents aortic aneurysm in mice with progressively severe Marfan syndrome. FASEB Journal, 2022, 36, .	0.5	0
3	Endothelial dysfunction drives aneurysm development in Marfan syndrome. FASEB Journal, 2022, 36, .	0.5	0
4	Fibrillin-1 deficiency in the outer perichondrium causes longitudinal bone overgrowth in mice with Marfan syndrome. Human Molecular Genetics, 2022, 31, 3281-3289.	2.9	2
5	Inhibition of HIPK2 Alleviates Thoracic Aortic Disease in Mice With Progressively Severe Marfan Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2483-2493.	2.4	4
6	Therapies for Thoracic Aortic Aneurysms and Acute Aortic Dissections. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 126-136.	2.4	86
7	The influence of fibrillinâ€l and physical activity upon tendon tissue morphology and mechanical properties in mice. Physiological Reports, 2019, 7, e14267.	1.7	9
8	Systems pharmacology–based integration of human and mouse data for drug repurposing to treat thoracic aneurysms. JCI Insight, 2019, 4, .	5.0	21
9	Cell Type–Specific Contributions of the Angiotensin II Type 1a Receptor to Aorta Homeostasis and Aneurysmal Disease—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 588-591.	2.4	47
10	Marfan syndrome; A connective tissue disease at the crossroads of mechanotransduction, TGFÎ ² signaling and cell stemness. Matrix Biology, 2018, 71-72, 82-89.	3.6	76
11	Extracellular Determinants of Arterial Morphogenesis, Growth, and Homeostasis. Current Topics in Developmental Biology, 2018, 130, 193-216.	2.2	3
12	Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection. JCI Insight, 2018, 3, .	5.0	118
13	Therapeutics Targeting Drivers of Thoracic Aortic Aneurysms and Acute Aortic Dissections: Insights from Predisposing Genes and Mouse Models. Annual Review of Medicine, 2017, 68, 51-67.	12.2	94
14	Fibrillin-1 Regulates Skeletal Stem Cell Differentiation by Modulating TGFÎ ² Activity Within the Marrow Niche. Journal of Bone and Mineral Research, 2016, 31, 86-97.	2.8	33
15	Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome. Annals of Biomedical Engineering, 2016, 44, 2994-3006.	2.5	29
16	Fibrillin-1 microfibrils influence adult bone marrow hematopoiesis. Matrix Biology, 2016, 52-54, 88-94.	3.6	10
17	Fibrillin microfibrils in bone physiology. Matrix Biology, 2016, 52-54, 191-197.	3.6	27
18	Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice. PLoS Genetics, 2015, 11, e1005340	3.5	47

FRANCESCO RAMIREZ

#	Article	IF	CITATIONS
19	Introduction to the mini-review series "Extracellular determinants of cell signaling― Matrix Biology, 2015, 47, 1-2.	3.6	2
20	Dimorphic Effects of Transforming Growth Factor-Î ² Signaling During Aortic Aneurysm Progression in Mice Suggest a Combinatorial Therapy for Marfan Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 911-917.	2.4	189
21	Genetic analysis of the contribution of LTBP-3 to thoracic aneurysm in Marfan syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14012-14017.	7.1	47
22	AFM indentation of aorta and lung reveals tissue-specific micromechanical degradation with age in a mouse model of severe Marfan syndrome. , 2015, , .		0
23	Collagen XXIV Null Mouse Bones Are Not Osteoporotic Due to an Insufficiency of Osteoblastogenesis Factors. FASEB Journal, 2015, 29, 699.1.	0.5	0
24	Fibrogenic actions of acetaldehyde are β-catenin dependent but Wingless independent: A critical role of nucleoredoxin and reactive oxygen species in human hepatic stellate cells. Free Radical Biology and Medicine, 2013, 65, 1487-1496.	2.9	27
25	Is losartan the drug for all seasons?. Current Opinion in Pharmacology, 2012, 12, 223-224.	3.5	8
26	Generation of <i>Fbn1</i> conditional null mice implicates the extracellular microfibrils in osteoprogenitor recruitment. Genesis, 2012, 50, 635-641.	1.6	19
27	Inactivation of Fibrillinâ€1 in Vascular Smooth Muscle Cells (VSMCs) but not Endothelial Cells (ECs) replicates Thoracic Aortic Aneurysm (TAA) seen in Marfan Syndrome (MFS). FASEB Journal, 2011, 25, lb463.	0.5	0
28	Biogenesis and function of fibrillin assemblies. Cell and Tissue Research, 2010, 339, 71-82.	2.9	172
29	Differential effects of alendronate and losartan therapy on osteopenia and aortic aneurysm in mice with severe Marfan syndrome. Human Molecular Genetics, 2010, 19, 4790-4798.	2.9	58
30	Fibrillin-1 and -2 differentially modulate endogenous TGF-Î ² and BMP bioavailability during bone formation. Journal of Cell Biology, 2010, 190, 1107-1121.	5.2	173
31	Collagen XXIV null mice have osteoporotic bones. FASEB Journal, 2010, 24, 638.1.	0.5	0
32	Latent Transforming Growth Factor β-binding Proteins and Fibulins Compete for Fibrillin-1 and Exhibit Exquisite Specificities in Binding Sites. Journal of Biological Chemistry, 2009, 284, 16872-16881.	3.4	146
33	Extracellular Microfibrils in Vertebrate Development and Disease Processes. Journal of Biological Chemistry, 2009, 284, 14677-14681.	3.4	41
34	p38 MAPK Is an Early Determinant of Promiscuous Smad2/3 Signaling in the Aortas of Fibrillin-1 (Fbn1)-null Mice. Journal of Biological Chemistry, 2009, 284, 5630-5636.	3.4	91
35	Extracellular microfibrils: contextual platforms for TGFÎ ² and BMP signaling. Current Opinion in Cell Biology, 2009, 21, 616-622.	5.4	196
36	Losartan, an AT1 Antagonist, Prevents Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Science, 2006, 312, 117-121.	12.6	1,591

FRANCESCO RAMIREZ

#	Article	IF	CITATIONS
37	Regulation of limb patterning by extracellular microfibrils. Journal of Cell Biology, 2001, 154, 275-282.	5.2	202
38	Developmental expression of the mouse gene coding for the kr�ppel-like transcription factor KLF5. , 2000, 217, 421-429.		81
39	Tumor Necrosis Factor Alpha Inhibits Type I Collagen Synthesis through Repressive CCAAT/Enhancer-Binding Proteins. Molecular and Cellular Biology, 2000, 20, 912-918.	2.3	153
40	Marfan Syndrome: New Clues to Genotype—Phenotype Correlations. Annals of Medicine, 1999, 31, 202-207.	3.8	48
41	Targetting of the gene encoding fibrillin–1 recapitulates the vascular aspect of Marfan syndrome. Nature Genetics, 1997, 17, 218-222.	21.4	366
42	Developmental pattern of expression of the mouse α1(XI) collagen gene (Col11a1). Developmental Dynamics, 1995, 204, 41-47.	1.8	68
43	Regulation of the α2(I) collagen gene transcription in fat-storing cells derived from a cirrhotic liver. Hepatology, 1995, 22, 573-579.	7.3	52
44	Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nature Genetics, 1995, 9, 31-36.	21.4	213
45	The question of heterogeneity in Marfan syndrome. Nature Genetics, 1995, 9, 228-229.	21.4	51
46	Fibrillin–2 (FBN2) mutations result in the Marfan–like disorder, congenital contractural arachnodactyly. Nature Genetics, 1995, 11, 456-458.	21.4	276
47	Fibrillin-1 and Fibrillin-2 Show Temporal and Tissue-Specific Regulation of Expression in Developing Elastic Tissues. Connective Tissue Research, 1995, 31, 87-97.	2.3	83
48	The fibrillin-marfan syndrome connection. BioEssays, 1993, 15, 589-594.	2.5	49
49	Pro-α2(V) Collagen Gene; Pairwise Analysis of the Amino-Propeptide Coding Domain, and Cross-Species Comparison of the Promoter Sequence. Connective Tissue Research, 1993, 29, 51-59.	2.3	8
50	The human rhabdomyosarcoma cell line A204 lays down a highly insoluble matrix composed mainly of alpha1 type-XI and alpha2 type-V collagen chains. FEBS Journal, 1992, 210, 329-335.	0.2	73
51	Localization of pro-α2(V) collagen transcripts in the tissues of the developing mouse embryo. Developmental Dynamics, 1992, 195, 113-120.	1.8	41
52	Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature, 1991, 352, 330-334.	27.8	676