Sean J Humphrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3672633/publications.pdf

Version: 2024-02-01

46 4,042 25 45 papers citations h-index g-index

55 55 55 55 6397

55 55 55 6397 all docs docs citations times ranked citing authors

#	Article	lF	Citations
1	High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nature Biotechnology, 2015, 33, 990-995.	9.4	408
2	Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends in Endocrinology and Metabolism, 2015, 26, 676-687.	3.1	402
3	Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metabolism, 2013, 17, 1009-1020.	7.2	352
4	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.	7.2	333
5	Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. Cell Metabolism, 2017, 25, 118-127.	7.2	297
6	High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nature Protocols, 2018, 13, 1897-1916.	5.5	238
7	A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation. Cell Reports, 2015, 12, 937-943.	2.9	232
8	Illuminating the dark phosphoproteome. Science Signaling, 2019, 12, .	1.6	219
9	BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22.	13.5	131
10	MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nature Biotechnology, 2021, 39, 1563-1573.	9.4	115
11	Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Systems, 2019, 8, 427-445.e10.	2.9	111
12	In vivo brain GPCR signaling elucidated by phosphoproteomics. Science, 2018, 360, .	6.0	105
13	Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. ELife, 2018, 7, .	2.8	91
14	Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nature Communications, 2019, 10, 5486.	5.8	89
15	mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Reports, 2016, 17, 29-36.	2.9	88
16	Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nature Communications, 2016, 7, 13250.	5.8	74
17	Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets. Cell Metabolism, 2019, 29, 1422-1432.e3.	7.2	65
18	Proteomic Analysis of Human Plasma during Intermittent Fasting. Journal of Proteome Research, 2019, 18, 2228-2240.	1.8	63

#	Article	IF	CITATIONS
19	Dynamic Metabolomics Reveals that Insulin Primes the Adipocyte for Glucose Metabolism. Cell Reports, 2017, 21, 3536-3547.	2.9	55
20	Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Science Signaling, 2015, 8, rs6.	1.6	53
21	PhosR enables processing and functional analysis of phosphoproteomic data. Cell Reports, 2021, 34, 108771.	2.9	48
22	Personalized phosphoproteomics identifies functional signaling. Nature Biotechnology, 2022, 40, 576-584.	9.4	44
23	<scp>TBC1D13</scp> is a <scp>RAB35</scp> Specific <scp>GAP</scp> that Plays an Important Role in <scp>GLUT4</scp> Trafficking in Adipocytes. Traffic, 2012, 13, 1429-1441.	1.3	42
24	Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data. Bioinformatics, 2016, 32, 252-259.	1.8	34
25	Insulin signaling requires glucose to promote lipid anabolism in adipocytes. Journal of Biological Chemistry, 2020, 295, 13250-13266.	1.6	31
26	Global phosphoproteomics reveals DYRK1A regulates CDK1 activity in glioblastoma cells. Cell Death Discovery, 2021, 7, 81.	2.0	31
27	Phosphoproteomics of Acute Cell Stressors Targeting Exercise Signaling Networks Reveal Drug Interactions Regulating Protein Secretion. Cell Reports, 2019, 29, 1524-1538.e6.	2.9	30
28	KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis. Proteomics, 2016, 16, 1868-1871.	1.3	27
29	RagC phosphorylation autoregulates <scp>mTOR</scp> complex 1. EMBO Journal, 2019, 38, .	3.5	26
30	ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Molecular Metabolism, 2019, 25, 83-94.	3.0	22
31	A Two-Dimensional Metallacycle Cross-Linked Switchable Polymer for Fast and Highly Efficient Phosphorylated Peptide Enrichment. Journal of the American Chemical Society, 2021, 143, 8295-8304.	6.6	22
32	Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. ELife, 2021, 10, .	2.8	21
33	PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications. BMC Genomics, 2015, 16, 617.	1.2	20
34	The amino acid transporter, <scp>SLC</scp> 1A3, is plasma membraneâ€localised in adipocytes and its activity is insensitive to insulin. FEBS Letters, 2017, 591, 322-330.	1.3	16
35	Uncaging Akt. Science Signaling, 2012, 5, pe20.	1.6	15
36	Hyperactivation of the Insulin Signaling Pathway Improves Intracellular Proteostasis by Coordinately Up-regulating the Proteostatic Machinery in Adipocytes. Journal of Biological Chemistry, 2016, 291, 25629-25640.	1.6	15

#	Article	IF	CITATIONS
37	Transcriptional network dynamics during the progression of pluripotency revealed by integrative statistical learning. Nucleic Acids Research, 2020, 48, 1828-1842.	6.5	14
38	Proteomic pathways to metabolic disease and type 2 diabetes in the pancreatic islet. IScience, 2021, 24, 103099.	1.9	12
39	Trafficking regulator of GLUT4-1 (TRARG1) is a GSK3 substrate. Biochemical Journal, 2022, 479, 1237-1256.	1.7	11
40	Mechanism of Regulation of Intrachromatid Recombination and Long-Range Chromosome Interactions in <i>Saccharomyces cerevisiae</i> in <i>Saccharomyces cerevisiae</i>	1.1	7
41	Insulin Tolerance Test under Anaesthesia to Measure Tissue-specific Insulin-stimulated Glucose Disposal. Bio-protocol, 2019, 9, e3146.	0.2	7
42	Re-Fraction: A Machine Learning Approach for Deterministic Identification of Protein Homologues and Splice Variants in Large-scale MS-based Proteomics. Journal of Proteome Research, 2012, 11, 3035-3045.	1.8	6
43	TSC-insensitive Rheb mutations induce oncogenic transformation through a combination of constitutively active mTORC1 signalling and proteome remodelling. Cellular and Molecular Life Sciences, 2021, 78, 4035-4052.	2.4	5
44	A TOR (target of rapamycin) and nutritional phosphoproteome of fission yeast reveals novel targets in networks conserved in humans. Open Biology, 2021, 11, 200405.	1.5	4
45	Environmental control of Pub1 (NEDD4 family E3 ligase) in <i>Schizosaccharomyces pombe</i> is regulated by TORC2 and Gsk3. Life Science Alliance, 2022, 5, e202101082.	1.3	3
46	Phosphoproteome and Proteome Sample Preparation from Mouse Tissues for Circadian Analysis. Methods in Molecular Biology, 2021, 2130, 185-193.	0.4	O