Van Bon Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3672624/publications.pdf

Version: 2024-02-01

54	1,228	23 h-index	31
papers	citations		g-index
55	55	55	686
all docs	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Utilization of By-Product of Groundnut Oil Processing for Production of Prodigiosin by Microbial Fermentation and Its Novel Potent Anti-Nematodes Effect. Agronomy, 2022, 12, 41.	1.3	16
2	Novel α-Amylase Inhibitor Hemi-Pyocyanin Produced by Microbial Conversion of Chitinous Discards. Marine Drugs, 2022, 20, 283.	2.2	9
3	Utilization of Fishery-Processing By-Product Squid Pens for Scale-Up Production of Phenazines via Microbial Conversion and Its Novel Potential Antinematode Effect. Fishes, 2022, 7, 113.	0.7	6
4	Conversion of Fishery Waste to Proteases by Streptomyces speibonae and Their Application in Antioxidant Preparation. Fishes, 2022, 7, 140.	0.7	1
5	Conversion of Pectin-Containing By-Products to Pectinases by Bacillus amyloliquefaciens and Its Applications on Hydrolyzing Banana Peels for Prebiotics Production. Polymers, 2021, 13, 1483.	2.0	14
6	Bioprocessing of Marine Chitinous Wastes for the Production of Bioactive Prodigiosin. Molecules, 2021, 26, 3138.	1.7	25
7	Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers, 2021, 13, 1959.	2.0	4
8	Proteases Production and Chitin Preparation from the Liquid Fermentation of Chitinous Fishery By-Products by Paenibacillus elgii. Marine Drugs, 2021, 19, 477.	2.2	13
9	Bioproduction of Prodigiosin from Fishery Processing Waste Shrimp Heads and Evaluation of Its Potential Bioactivities. Fishes, 2021, 6, 30.	0.7	17
10	Potential Application of Rhizobacteria Isolated from the Central Highland of Vietnam as an Effective Biocontrol Agent of Robusta Coffee Nematodes and as a Bio-Fertilizer. Agronomy, 2021, 11, 1887.	1.3	12
11	Utilization of Cassava Wastewater for Low-Cost Production of Prodigiosin via Serratia marcescens TNU01 Fermentation and Its Novel Potent α-Glucosidase Inhibitory Effect. Molecules, 2021, 26, 6270.	1.7	15
12	Novel Efficient Bioprocessing of Marine Chitins into Active Anticancer Prodigiosin. Marine Drugs, 2020, $18,15.$	2.2	31
13	Utilization of Seafood Processing By-Products for Production of Proteases by Paenibacillus sp. TKU052 and Their Application in Biopeptides' Preparation. Marine Drugs, 2020, 18, 574.	2.2	11
14	Reclamation of beneficial bioactivities of herbal antioxidant condensed tannin extracted from Euonymus laxiflorus. Research on Chemical Intermediates, 2020, 46, 4751-4766.	1.3	6
15	Utilization of Crab Waste for Cost-Effective Bioproduction of Prodigiosin. Marine Drugs, 2020, 18, 523.	2.2	24
16	Microbial Reclamation of Chitin and Protein-Containing Marine By-Products for the Production of Prodigiosin and the Evaluation of Its Bioactivities. Polymers, 2020, 12, 1328.	2.0	19
17	Production and Potential Applications of Bioconversion of Chitin and Protein-Containing Fishery Byproducts into Prodigiosin: A Review. Molecules, 2020, 25, 2744.	1.7	26

Phytophthora Antagonism of Endophytic Bacteria Isolated from Roots of Black Pepper (Piper nigrum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
19	Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production. Polymers, 2020, 12, 1163.	2.0	17
20	New indications of potential rat intestinal \hat{l} ±-glucosidase inhibition by Syzygium zeylanicum (L.) and its hypoglycemic effect in mice. Research on Chemical Intermediates, 2019, 45, 6061-6071.	1.3	7
21	Anti-Oxidant and Anti-Diabetes Potential of Water-Soluble Chitosan–Glucose Derivatives Produced by Maillard Reaction. Polymers, 2019, 11, 1714.	2.0	34
22	Conversion of Shrimp Head Waste for Production of a Thermotolerant, Detergent-Stable, Alkaline Protease by Paenibacillus sp Catalysts, 2019, 9, 798.	1.6	21
23	Plant growth promotion and fungal antagonism of endophytic bacteria for the sustainable production of black pepper (Piper nigrum L.). Research on Chemical Intermediates, 2019, 45, 5325-5339.	1.3	6
24	A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum) Tj ETQq	0 0 0 rgBT 1.3	Oyerlock 10
25	Reclamation of rhizobacteria newly isolated from black pepper plant roots as potential biocontrol agents of root-knot nematodes. Research on Chemical Intermediates, 2019, 45, 5293-5307.	1.3	18
26	An Exochitinase with N-Acetyl-Î ² -Glucosaminidase-Like Activity from Shrimp Head Conversion by Streptomyces speibonae and Its Application in Hydrolyzing Î ² -Chitin Powder to Produce N-Acetyl-d-Glucosamine. Polymers, 2019, 11, 1600.	2.0	23
27	Bioprocessing shrimp shells for rat intestinal α-glucosidase inhibitor and its effect on reducing blood glucose in a mouse model. Research on Chemical Intermediates, 2019, 45, 4829-4846.	1.3	9
28	Reclamation of Fishery Processing Waste: A Mini-Review. Molecules, 2019, 24, 2234.	1.7	78
29	Production of a Thermostable Chitosanase from Shrimp Heads via Paenibacillus mucilaginosus TKU032 Conversion and its Application in the Preparation of Bioactive Chitosan Oligosaccharides. Marine Drugs, 2019, 17, 217.	2.2	32
30	Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. International Journal of Biological Macromolecules, 2019, 131, 706-715.	3.6	75
31	Anti-α-Glucosidase Activity by a Protease from Bacillus licheniformis. Molecules, 2019, 24, 691.	1.7	20
32	Study of Novel Endophytic Bacteria for Biocontrol of Black Pepper Root-knot Nematodes in the Central Highlands of Vietnam. Agronomy, 2019, 9, 714.	1.3	29
33	Production of potent antidiabetic compounds from shrimp head powder via Paenibacillus conversion. Process Biochemistry, 2019, 76, 18-24.	1.8	24
34	Bioactivity-Guided Purification of Novel Herbal Antioxidant and Anti-NO Compounds from Euonymus laxiflorus Champ Molecules, 2019, 24, 120.	1.7	13
35	The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers. Research on Chemical Intermediates, 2019, 45, 727-742.	1.3	39
36	Conversion of squid pens to chitosanases and dye adsorbents via Bacillus cereus. Research on Chemical Intermediates, 2018, 44, 4903-4911.	1.3	19

#	Article	IF	CITATIONS
37	Reclamation of shrimp heads for the production of \hat{i} ±-glucosidase inhibitors by Staphylococcus sp. TKU043. Research on Chemical Intermediates, 2018, 44, 4929-4937.	1.3	20
38	Conversion of shrimp heads to α-glucosidase inhibitors via co-culture of Bacillus mycoides TKU040 and Rhizobium sp. TKU041. Research on Chemical Intermediates, 2018, 44, 4597-4607.	1.3	16
39	Isolation and identification of novel $\hat{l}\pm$ -amylase inhibitors from Euonymus laxiflorus Champ Research on Chemical Intermediates, 2018, 44, 1411-1424.	1.3	13
40	New novel α–glucosidase inhibitors produced by microbial conversion. Process Biochemistry, 2018, 65, 228-232.	1.8	32
41	Isolation and Identification of Potent Antidiabetic Compounds from Antrodia cinnamomea—An Edible Taiwanese Mushroom. Molecules, 2018, 23, 2864.	1.7	26
42	Reclamation of Marine Chitinous Materials for Chitosanase Production via Microbial Conversion by Paenibacillus macerans. Marine Drugs, 2018, 16, 429.	2.2	33
43	Novel Potent Hypoglycemic Compounds from Euonymus laxiflorus Champ. and Their Effect on Reducing Plasma Glucose in an ICR Mouse Model. Molecules, 2018, 23, 1928.	1.7	16
44	New Records of Potent In-Vitro Antidiabetic Properties of Dalbergia tonkinensis Heartwood and the Bioactivity-Guided Isolation of Active Compounds. Molecules, 2018, 23, 1589.	1.7	27
45	Conversion of Squid Pens to Chitosanases and Proteases via Paenibacillus sp. TKU042. Marine Drugs, 2018, 16, 83.	2.2	24
46	Production and Bioactivity-Guided Isolation of Antioxidants with α-Glucosidase Inhibitory and Anti-NO Properties from Marine Chitinous Materials. Molecules, 2018, 23, 1124.	1.7	26
47	Screening and evaluation of α-glucosidase inhibitors from indigenous medicinal plants in Dak Lak Province, Vietnam. Research on Chemical Intermediates, 2017, 43, 3599-3612.	1.3	29
48	Porcine pancreatic \hat{l}_{\pm} -amylase inhibitors from Euonymus laxiflorus Champ Research on Chemical Intermediates, 2017, 43, 259-269.	1.3	23
49	Free radical scavenging and antidiabetic activities of Euonymus laxiflorus Champ. extract. Research on Chemical Intermediates, 2017, 43, 5615-5624.	1.3	14
50	Utilization of Fishery Processing By-Product Squid Pens for \hat{l}_{\pm} -Glucosidase Inhibitors Production by Paenibacillus sp Marine Drugs, 2017, 15, 274.	2.2	35
51	Reclamation of Marine Chitinous Materials for the Production of α-Glucosidase Inhibitors via Microbial Conversion. Marine Drugs, 2017, 15, 350.	2.2	33
52	Biosynthesis of α-Glucosidase Inhibitors by a Newly Isolated Bacterium, Paenibacillus sp. TKU042 and Its Effect on Reducing Plasma Glucose in a Mouse Model. International Journal of Molecular Sciences, 2017, 18, 700.	1.8	26
53	Anti-oxidant and antidiabetic effect of some medicinal plants belong to Terminalia species collected in Dak Lak Province, Vietnam. Research on Chemical Intermediates, 2016, 42, 5859-5871.	1.3	24
54	Production and purification of a fungal chitosanase and chitooligomers from Penicillium janthinellum D4 and discovery of the enzyme activators. Carbohydrate Polymers, 2014, 108, 331-337.	5.1	51