Dietrich van Calker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3672426/publications.pdf

Version: 2024-02-01

28 papers 2,928 citations

361045 20 h-index 28 g-index

28 all docs

28 docs citations

times ranked

28

2205 citing authors

#	Article	IF	Citations
1	ADENOSINE REGULATES VIA TWO DIFFERENT TYPES OF RECEPTORS, THE ACCUMULATION OF CYCLIC AMP IN CULTURED BRAIN CELLS. Journal of Neurochemistry, 1979, 33, 999-1005.	2.1	1,327
2	Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature, 1978, 276, 839-841.	13.7	229
3	Expression and Signaling of Group I Metabotropic Glutamate Receptors in Astrocytes and Microglia. Journal of Neurochemistry, 2001, 72, 1671-1680.	2.1	200
4	Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron, 2015, 87, 549-562.	3.8	168
5	Adenosine A _{2b} Receptors Mediate an Increase in Interleukin (IL)â€6 mRNA and ILâ€6 Protein Synthesis in Human Astroglioma Cells. Journal of Neurochemistry, 1996, 66, 1426-1431.	2.1	102
6	Mechanism of microglia neuroprotection: Involvement of $\langle scp \rangle P2X \langle scp \rangle 7$, $\langle scp \rangle TNF \langle scp \rangle \hat{l}_{\pm}$, and valproic acid. Glia, 2016, 64, 76-89.	2.5	76
7	The role of adenosine receptors in mood and anxiety disorders. Journal of Neurochemistry, 2019, 151, 11-27.	2.1	76
8	Time course of response to antidepressants: Predictive value of early improvement and effect of additional psychotherapy. Journal of Affective Disorders, 2009, 114, 243-253.	2.0	69
9	The Role of Glial Adenosine Receptors in Neural Resilience and the Neurobiology of Mood Disorders. Neurochemical Research, 2005, 30, 1205-1217.	1.6	68
10	Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Medicine Reviews, 2016, 30, 53-62.	3.8	66
11	Inhibition of the High Affinity Myo-Inositol Transport System A Common Mechanism of Action of Antibipolar Drugs?. Neuropsychopharmacology, 1999, 21, 519-529.	2.8	59
12	The high affinity inositol transport system - implications for the pathophysiology and treatment of bipolar disorder. Bipolar Disorders, 2000, 2, 102-107.	1.1	55
13	Enhanced mGlu5 Signaling in Excitatory Neurons Promotes Rapid Antidepressant Effects via AMPA Receptor Activation. Neuron, 2019, 104, 338-352.e7.	3.8	55
14	Carbamazepine distinguishes between adenosine receptors that mediate different second messenger responses. European Journal of Pharmacology, 1991, 206, 285-290.	2.7	52
15	Premorbid personality in patients with uni- and bipolar affective disorders and controls: assessment by the Biographical Personality Interview (BPI). European Archives of Psychiatry and Clinical Neuroscience, 1997, 247, 23-30.	1.8	46
16	Carbamazepine-Induced Upregulation of Adenosine A1-Receptors in Astrocyte Cultures Affects Coupling to the Phosphoinositol Signaling Pathway. Neuropsychopharmacology, 1999, 20, 271-278.	2.8	42
17	IL-6 expression induced by adenosine A2b receptor stimulation in U373 MG cells depends on p38 mitogen activated kinase and protein kinase C. Neurochemistry International, 2005, 46, 501-512.	1.9	38
18	Signaling pathways regulating Homer1a expression: implications for antidepressant therapy. Biological Chemistry, 2016, 397, 207-214.	1.2	33

#	Article	IF	CITATION
19	Recent insights into antidepressant therapy: Distinct pathways and potential common mechanisms in the treatment of depressive syndromes. Neuroscience and Biobehavioral Reviews, 2018, 88, 63-72.	2.9	25
20	Local stimulation of the adenosine A _{2B} receptors induces an increased release of ILâ€6 in mouse striatum: an <i>in vivo</i> microdialysis study. Journal of Neurochemistry, 2008, 105, 904-909.	2.1	24
21	Enhanced adenosine A1 receptor and Homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology, 2020, 162, 107834.	2.0	23
22	Inhibition of inositol uptake in astrocytes by antisense oligonucleotides delivered by pH-sensitive liposomes. FEBS Journal, 2000, 267, 2432-2438.	0.2	18
23	Carbamazepine inhibits the potentiation by adenosine analogues of agonist induced inositolphosphate formation in hippocampal astrocyte cultures. Biological Psychiatry, 1996, 40, 563-567.	0.7	17
24	Alterations in Cerebrospinal Fluid in Patients with Bipolar Syndromes. Frontiers in Psychiatry, 2016, 7, 194.	1.3	15
25	Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS) 2, 3 and 4 in Astrocyte-Like Cells. PLoS ONE, 2015, 10, e0134934.	1.1	14
26	The "missing heritabilityâ€â€"Problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution?. Neuroscience and Biobehavioral Reviews, 2021, 126, 23-42.	2.9	11
27	Possible role of adenosine receptors in psychiatric diseases. Drug Development Research, 1993, 28, 354-358.	1.4	10
28	Genetically Controlled Upregulation of Adenosine A1 Receptor Expression Enhances the Survival of Primary Cortical Neurons, Molecular Neurobiology, 2012, 46, 535-544.	1.9	10