
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3672320/publications.pdf Version: 2024-02-01

TDUST RETA

#	Article	IF	CITATIONS
1	Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods, 2019, 8, 185.	1.9	542
2	Phenolic Content and Antioxidant Activity of Pearled Wheat and Roller-Milled Fractions. Cereal Chemistry, 2005, 82, 390-393.	1.1	333
3	Genotype and Environmental Variation in Phenolic Content, Phenolic Acid Composition, and Antioxidant Activity of Hard Spring Wheat. Journal of Agricultural and Food Chemistry, 2006, 54, 1265-1270.	2.4	249
4	Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chemistry, 2008, 109, 916-924.	4.2	231
5	Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 2018, 240, 212-221.	4.2	209
6	Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chemistry, 2010, 121, 140-147.	4.2	204
7	Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). Journal of Cereal Science, 2014, 59, 211-218.	1.8	199
8	Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chemistry, 2016, 196, 90-97.	4.2	176
9	Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chemistry, 2019, 275, 361-368.	4.2	167
10	Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chemistry, 2007, 104, 1080-1086.	4.2	154
11	Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chemistry, 2018, 239, 733-741.	4.2	145
12	Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals. Food Research International, 2013, 51, 518-525.	2.9	143
13	Free Radical Scavenging Properties and Phenolic Content of Chinese Black-Grained Wheat. Journal of Agricultural and Food Chemistry, 2005, 53, 8533-8536.	2.4	137
14	Comparison of Antioxidant Activities of Different Colored Wheat Grains and Analysis of Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2010, 58, 9235-9241.	2.4	136
15	Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chemistry, 2014, 143, 90-96.	4.2	130
16	Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of Brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages. Food Research International, 2011, 44, 2442-2451.	2.9	120
17	Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels. Food Chemistry, 2013, 139, 663-671.	4.2	112
18	Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chemistry, 2015, 172, 630-639.	4.2	112

#	Article	IF	CITATIONS
19	Comparison of Antioxidant Properties of Refined and Whole Wheat Flour and Bread. Antioxidants, 2013, 2, 370-383.	2.2	107
20	Saskatoon and Wild Blueberries Have Higher Anthocyanin Contents than Other Manitoba Berries. Journal of Agricultural and Food Chemistry, 2007, 55, 10832-10838.	2.4	100
21	Starch properties as affected by sorghum grain chemistry. Journal of the Science of Food and Agriculture, 2001, 81, 245-251.	1.7	97
22	Hydroxycinnamic acid amide (HCAA) derivatives, flavonoid C-glycosides, phenolic acids and antioxidant properties of foxtail millet. Food Chemistry, 2019, 295, 214-223.	4.2	94
23	Anthocyanin Composition and Oxygen Radical Scavenging Capacity (ORAC) of Milled and Pearled Purple, Black, and Common Barley. Journal of Agricultural and Food Chemistry, 2009, 57, 1022-1028.	2.4	87
24	Effect of Ferulic Acid and Catechin on Sorghum and Maize Starch Pasting Properties. Cereal Chemistry, 2004, 81, 418-422.	1.1	85
25	Antioxidant Activity of Commercial Wild Rice and Identification of Flavonoid Compounds in Active Fractions. Journal of Agricultural and Food Chemistry, 2009, 57, 7543-7551.	2.4	81
26	Antioxidant properties of commercial, regular- and whole-wheat spaghetti. Food Chemistry, 2010, 119, 258-264.	4.2	80
27	Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination. Food Chemistry, 2016, 194, 608-618.	4.2	79
28	Anthocyanins, Phenolic Acids and Antioxidant Properties of Juçara Fruits (Euterpe edulis M.) Along the On-tree Ripening Process. Plant Foods for Human Nutrition, 2014, 69, 142-147.	1.4	78
29	Antioxidant capacity of arabinoxylan oligosaccharide fractions prepared from wheat aleurone using Trichoderma viride or Neocallimastix patriciarum xylanase. Food Chemistry, 2015, 167, 311-319.	4.2	78
30	Phenolic acid content of sorghum and maize cultivars varying in hardness. Food Chemistry, 2012, 134, 81-88.	4.2	75
31	ldentification and Antioxidant Properties of Phenolic Compounds during Production of Bread from Purple Wheat Grains. Molecules, 2015, 20, 15525-15549.	1.7	72
32	Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn. Open Life Sciences, 2009, 4, 499-506.	0.6	70
33	Evaluation of antioxidant capacity and aroma quality of breast milk. Nutrition, 2009, 25, 105-114.	1.1	69
34	Comparative Studies on Composition and Distribution of Phenolic Acids in Cereal Grain Botanical Fractions. Cereal Chemistry, 2014, 91, 522-530.	1.1	68
35	Development of Chinese steamed bread enriched in bioactive compounds from barley hull and flaxseed hull extracts. Food Chemistry, 2012, 133, 1320-1325.	4.2	65
36	Phenolic Content, Composition, Antioxidant Activity, and Their Changes during Domestic Cooking of Potatoes. Journal of Agricultural and Food Chemistry, 2009, 57, 10231-10238.	2.4	64

#	Article	IF	CITATIONS
37	Microwave-Assisted Extraction of Bound Phenolic Acids in Bran and Flour Fractions from Sorghum and Maize Cultivars Varying in Hardness. Journal of Agricultural and Food Chemistry, 2012, 60, 4735-4742.	2.4	62
38	Genetic and Environmental Variation in Sorghum Starch Properties. Journal of Cereal Science, 2001, 34, 261-268.	1.8	60
39	Phenolic compounds and kernel characteristics of Zimbabwean sorghums. , 1999, 79, 1003-1010.		58
40	Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran. LWT - Food Science and Technology, 2014, 57, 569-579.	2.5	57
41	Assessment of complementary feeding of Canadian infants: effects on microbiome & oxidative stress, a randomized controlled trial. BMC Pediatrics, 2017, 17, 54.	0.7	57
42	Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends in Food Science and Technology, 2021, 118, 808-821.	7.8	57
43	Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Research International, 2019, 123, 1-10.	2.9	54
44	Influence of heat and moisture treatment on carotenoids, phenolic content, and antioxidant capacity of orange maize flour. Food Chemistry, 2018, 246, 58-64.	4.2	53
45	A comparative study of the phenolic compounds and in vitro antioxidant capacity of finger millets from different growing regions in Malawi. Journal of Cereal Science, 2019, 87, 143-149.	1.8	53
46	Improved functional properties of pasta: Enrichment with amaranth seed flour and dried amaranth leaves. Journal of Cereal Science, 2016, 72, 84-90.	1.8	52
47	Kinetics of hydrolysis and changes in amylose content during preparation of microcrystalline starch from high-amylose maize starches. Carbohydrate Polymers, 2007, 69, 398-405.	5.1	51
48	Inhibition of Intestinal <i>α</i> -Glucosidase and Glucose Absorption by Feruloylated Arabinoxylan Mono- and Oligosaccharides from Corn Bran and Wheat Aleurone. Journal of Nutrition and Metabolism, 2016, 2016, 1-9.	0.7	51
49	Evaluation of Antioxidant Activity and Electronic Taste and Aroma Properties of Antho-Beers from Purple Wheat Grain. Journal of Agricultural and Food Chemistry, 2007, 55, 8958-8966.	2.4	50
50	Ultrasonic-assisted enzymatic extraction and identification of anthocyanin components from mulberry wine residues. Food Chemistry, 2020, 323, 126714.	4.2	48
51	Proanthocyanidin Profile and ORAC Values of Manitoba Berries, Chokecherries, and Seabuckthorn. Journal of Agricultural and Food Chemistry, 2007, 55, 6970-6976.	2.4	47
52	Comparative Evaluation of the Antioxidant Potential of Infant Cereals Produced from Purple Wheat and Red Rice Grains and LC-MS Analysis of Their Anthocyanins. Journal of Agricultural and Food Chemistry, 2011, 59, 12330-12341.	2.4	45
53	Qualitative and quantitative analysis of the major phenolic compounds as antioxidants in barley and flaxseed hulls using HPLC/MS/MS. Journal of the Science of Food and Agriculture, 2012, 92, 2062-2068.	1.7	45
54	Antioxidant Capacity of Waterâ€Extractable Arabinoxylan from Commercial Barley, Wheat, and Wheat Fractions. Cereal Chemistry, 2015, 92, 29-36.	1.1	45

#	Article	IF	CITATIONS
55	Noodle Quality as Related to Sorghum Starch Properties. Cereal Chemistry, 2001, 78, 417-420.	1.1	43
56	High-Amylose Corn Exhibits Better Antioxidant Activity than Typical and Waxy Genotypes. Journal of Agricultural and Food Chemistry, 2007, 55, 291-298.	2.4	41
57	Hypoglycemic and hypolipidemic effects of blueberry anthocyanins by AMPK activation: In vitro and in vivo studies. Redox Biology, 2021, 46, 102100.	3.9	41
58	Effects of Salt and Alkaline Reagents on Dynamic Rheological Properties of Raw Oriental Wheat Noodles. Cereal Chemistry, 2006, 83, 211-217.	1.1	40
59	Protein characteristics of Chinese black-grained wheat. Food Chemistry, 2006, 98, 463-472.	4.2	38
60	Phenolic Acids, Antioxidant Capacity, and Estimated Glycemic Index of Cookies Added with Brewer's Spent Grain. Plant Foods for Human Nutrition, 2020, 75, 41-47.	1.4	38
61	Carotenoids of Aleurone, Germ, and Endosperm Fractions of Barley, Corn and Wheat Differentially Inhibit Oxidative Stress. Journal of Agricultural and Food Chemistry, 2015, 63, 2715-2724.	2.4	37
62	Phenolic Profile and Antioxidant Activity of the Edible Tree Peony Flower and Underlying Mechanisms of Preventive Effect on H2O2-Induced Oxidative Damage in Caco-2 Cells. Foods, 2019, 8, 471.	1.9	37
63	Provitamin A potential of landrace orange maize variety (Zea mays L.) grown in different geographical locations of central Malawi. Food Chemistry, 2016, 196, 1315-1324.	4.2	36
64	Genotypic variation in phenolic acids, vitamin E and fatty acids in whole grain rice. Food Chemistry, 2016, 197, 776-782.	4.2	35
65	A comparative analysis on the anthocyanin composition of 74 blueberry cultivars from China. Journal of Food Composition and Analysis, 2021, 102, 104051.	1.9	35
66	Multi-response optimization of phenolic antioxidants from white tea (Camellia sinensis L. Kuntze) and their identification by LC–DAD–Q-TOF–MS/MS. LWT - Food Science and Technology, 2016, 65, 897-907.	2.5	34
67	Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity. Bioactive Carbohydrates and Dietary Fibre, 2017, 10, 20-26.	1.5	34
68	Evaluation of antioxidant capacity and aroma quality of anthograin liqueur. Food Chemistry, 2011, 127, 968-975.	4.2	31
69	Combination effects of wild rice and phytosterols on prevention of atherosclerosis in LDL receptor knockout mice. Journal of Nutritional Biochemistry, 2016, 33, 128-135.	1.9	31
70	Isolation and identification of feruloylated arabinoxylan mono- and oligosaccharides from undigested and digested maize and wheat. Heliyon, 2016, 2, e00106.	1.4	31
71	Genetic Diversity in Properties of Starch from Zimbabwean Sorghum Landraces. Cereal Chemistry, 2001, 78, 583-589.	1.1	30
72	Inhibitory Properties of Aqueous Ethanol Extracts of Propolis on Alpha-Glucosidase. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-7.	0.5	30

#	Article	IF	CITATIONS
73	An evaluation of the antioxidant properties and aroma quality of infant cereals. Food Chemistry, 2010, 121, 1095-1102.	4.2	28
74	Endoplasmic reticulum stress in diabetic mouse or glycated LDL-treated endothelial cells: protective effect of Saskatoon berry powder and cyanidin glycans. Journal of Nutritional Biochemistry, 2015, 26, 1248-1253.	1.9	27
75	Alkali-Extracted Feruloylated Arabinoxylans from Nixtamalized Maize Bran Byproduct: A Synonymous with Soluble Antioxidant Dietary Fiber. Waste and Biomass Valorization, 2020, 11, 403-409.	1.8	27
76	Wild rice (Zizania palustris L.) prevents atherogenesis in LDL receptor knockout mice. Atherosclerosis, 2013, 230, 284-292.	0.4	25
77	Analysis of Genotype, Environment, and Their Interaction Effects on the Phytochemicals and Antioxidant Capacities of Red Rice (<i>Oryza sativa</i> L.). Cereal Chemistry, 2015, 92, 204-210.	1.1	25
78	Impact of Saskatoon berry powder on insulin resistance and relationship with intestinal microbiota in high fat–high sucrose diet-induced obese mice. Journal of Nutritional Biochemistry, 2019, 69, 130-138.	1.9	25
79	Discrimination of geographical origin of Napirira bean (Phaseolus vulgaris L.) based on phenolic profiles and antioxidant activity. Journal of Food Composition and Analysis, 2017, 62, 217-222.	1.9	24
80	Antiglycemic Effect of Water Extractable Arabinoxylan from Wheat Aleurone and Bran. Journal of Nutrition and Metabolism, 2017, 2017, 1-6.	0.7	24
81	An evaluation of carotenoid levels and composition of glabrous canaryseed. Food Chemistry, 2012, 133, 782-786.	4.2	23
82	Patented Techniques for the Extraction and Isolation of Secoisolariciresinol Diglucoside from Flaxseed. Recent Patents on Food, Nutrition & amp; Agriculture, 2009, 1, 25-31.	0.5	22
83	Effect of chemical conditioning on the milling of high-tannin sorghum. Journal of the Science of Food and Agriculture, 2000, 80, 2216-2222.	1.7	21
84	Effect of Steeping Treatment on Pasting and Thermal Properties of Sorghum Starches. Cereal Chemistry, 2001, 78, 303-306.	1.1	19
85	The analysis of phenolic constituents in glabrous canaryseed groats. Food Chemistry, 2011, 127, 10-20.	4.2	19
86	Influence of stingless bee genus (Scaptotrigona and Melipona) on the mineral content, physicochemical and microbiological properties of honey. Journal of Food Science and Technology, 2019, 56, 4742-4748.	1.4	18
87	Bioaccessibility of phenolic acids in Canadian hulless barley varieties. Food Chemistry, 2021, 358, 129905.	4.2	18
88	Effect of in vitro gastro-intestinal digestion on the phenolic composition and antioxidant capacity of Burdock roots at different harvest time. Food Chemistry, 2021, 358, 129897.	4.2	18
89	Effects of Saskatoon berry powder on monocyte adhesion to vascular wall of leptin receptor-deficient diabetic mice. Journal of Nutritional Biochemistry, 2014, 25, 851-857.	1.9	17
90	Sustainable Use of Ilex paraguariensis Waste in Improving Biodegradable Corn Starch Films' Mechanical, Thermal and Bioactive Properties. Journal of Polymers and the Environment, 2020, 28, 1696-1709.	2.4	16

#	Article	IF	CITATIONS
91	Starch Properties of Barnard Red, a South African Red Sorghum Variety of Significance in Traditional African Brewing. Starch/Staerke, 2000, 52, 467-470.	1.1	15
92	Changes in the Phenolic Acid Content and Antioxidant Activity During Kernel Development of Corn (Zea mays L.) and Relationship with Mycotoxin Contamination. Cereal Chemistry, 2017, 94, 315-324.	1.1	14
93	Green Development of Biodegradable Films Based on Native Yam (Dioscoreaceae) Starch Mixtures. Starch/Staerke, 2018, 70, 1700234.	1.1	14
94	Hydrothermal extraction, a promising method for concentrating phenolic antioxidants from red osier dogwood (Cornus stolonifer) leaves and stems. Heliyon, 2020, 6, e05158.	1.4	14
95	Germinated Brown Rice Attenuates Atherosclerosis and Vascular Inflammation in Low-Density Lipoprotein Receptor-Knockout Mice. Journal of Agricultural and Food Chemistry, 2018, 66, 4512-4520.	2.4	13
96	Brazilian Amazon white yam (Dioscorea sp.) starch. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2075-2088.	2.0	13
97	Effects of debranning on the distribution of pentosans and relationships to phenolic content and antioxidant activity of wheat pearling fractions. LWT - Food Science and Technology, 2013, 50, 336-342.	2.5	11
98	Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 9054-9060.	2.4	11
99	Influence of Agricultural Management on Phytochemicals of Colored Corn Genotypes (<i>Zea) Tj ETQq1 1 0.784 4300-4308.</i>	314 rgBT 2.4	/Overlock 10 11
100	Comparison of Nutritional and Nutraceutical Properties of Burdock Roots Cultivated in Fengxian and Peixian of China. Foods, 2021, 10, 2095.	1.9	11
101	Natural bioactive starch film from Amazon turmeric (Curcuma longa L.). Polymer Bulletin, 2018, 75, 4735-4752.	1.7	10
102	Influence of Agricultural Management on Phytochemicals of Colored Corn Genotypes (<i>Zea) Tj ETQq0 0 0 rgB</i>	Г /Qverloc 2.4	k 10 Tf 50 30
103	Influence of cooking duration on carotenoids, physical properties and in vitro antioxidant capacity of pasta prepared from three Canadian durum wheat cultivars. Food Chemistry, 2021, 363, 130016.	4.2	10
104	Flour and Bread from Black-, Purple-, and Blue-Colored Wheats. , 2011, , 59-67.		8
105	<i>C</i> â€Glycosylflavone and Lignan Diglucoside Contents of Commercial, Regular, and Wholeâ€Wheat Spaghetti. Cereal Chemistry, 2011, 88, 338-343.	1.1	8
106	Novel Oxidized and UVâ€Irradiated <i>Araucaria angustifolia</i> Pine Seed Starch for Enhanced Functional Properties. Starch/Staerke, 2019, 71, 1800140.	1,1	8
107	Ripe and unripe inajá (Maximilia maripa) fruit: A new high source of added value bioactive compounds. Food Chemistry, 2020, 331, 127333.	4.2	8
108	Hemicellulose polysaccharide recovery from flax shive using alkaline solutions with sodium ethoxide	2.5	7

pretreatment. Industrial Crops and Products, 2013, 44, 165-170. 08

#	Article	IF	CITATIONS
109	Purification and structural identification of glutelin peptides derived from oats. CYTA - Journal of Food, 2017, 15, 508-515.	0.9	7
110	Comparison of Phytochemicals and Antioxidant Capacity in Three Bean Varieties Grown in Central Malawi. Plant Foods for Human Nutrition, 2016, 71, 204-210.	1.4	6
111	Postharvest Technologies. , 2019, , 69-84.		6
112	Carica papaya seed enhances phytochemicals and functional properties in cornmeal porridges. Food Chemistry, 2020, 323, 126808.	4.2	6
113	Proximate Composition, Phenolic Profiles and Antioxidant Capacity of Three Common Bean Varieties (Phaseolus Vulgaris L.). Journal of Food Chemistry and Nanotechnology, 2016, 2, .	0.7	5
114	Patented Techniques for the Extraction and Isolation of Secoisolariciresinol Diglucoside from Flaxseed. Recent Patents on Food, Nutrition & amp; Agriculture, 2010, 1, 25-31.	0.5	5
115	Antioxidant Activity in Relationship to Phenolic Content of Diverse Food Barley Genotypes. ACS Symposium Series, 2007, , 242-254.	0.5	4
116	Food Sources of Phenolics Compounds. , 2013, , 2527-2558.		4
117	Dietary corn fractions reduce atherogenesis in low-density lipoprotein receptor knockout mice. Nutrition Research, 2017, 37, 87-96.	1.3	4
118	Phenolic Composition and Antioxidant Properties of Cooked Rice Dyed with Sorghum-Leaf Bio-Colorants. Foods, 2021, 10, 2058.	1.9	4
119	Effect of simulated in vitro upper gut digestion of processed cowpea beans on phenolic composition, antioxidant properties and cellular protection. Food Research International, 2021, 150, 110750.	2.9	4
120	Purple Wheat (Triticum sp.) Seeds. , 2020, , 103-125.		4
121	Flour and Bread From Black, Purple, and Blue-Colored Wheats. , 2019, , 75-88.		3
122	Effect of processing on bioaccessibility of carotenoids from orange maize products. International Journal of Food Science and Technology, 2021, 56, 3299-3310.	1.3	3
123	Phenolic compounds and kernel characteristics of Zimbabwean sorghums. , 1999, 79, 1003.		3
124	Sorghum Processing Technologies in Southern Africa. , 1997, , 265-272.		3
125	Effects of Genotype, Environment and Genotype× Environment Interaction on the Antioxidant Properties of Wheat. , 0, , 24-41.		2

8

#	Article	IF	CITATIONS
127	Resistant Starch in Wheatâ€, Barleyâ€, Ryeâ€, and Oatâ€Based Foods: A Review. Starch/Staerke, 2023, 75, .	1.1	2
128	The potential of Manitoba chokecherry as a source of high natural antioxidants. Nature Precedings, 2008, , .	0.1	1
129	Extracts from Purple Wheat (Triticum spp.) and Their Antioxidant Effects. , 2011, , 959-966.		1
130	Characterization of Free and Bound Lipids among Four Corn Genotypes as Affected by Drying and Storage Temperatures. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1201-1210.	0.8	1
131	Impact of Saskatoon Berry Powder on Insulin Resistance and Intestinal Microbiome in High-Fat, High-Sucrose Diet-Induced Obese and Insulin-Resistant Mice. Canadian Journal of Diabetes, 2018, 42, S31.	0.4	1
132	Evaluation of the Phenolics and in vitro Antioxidant Activity of Different Botanical Herbals Used for Tea Infusions in Brazil. Current Nutrition and Food Science, 2019, 15, 345-352.	0.3	1
133	Effect of cooking duration on carotenoid content, digestion and potential absorption efficiencies among refined semolina and whole wheat pasta products. Food and Function, 2022, 13, 5953-5970.	2.1	1
134	Effects of Saskatoon Berry Powder on Monocyte Adhesion to Vascular Wall of Leptin Receptor-Deficient Diabetic Mice. Canadian Journal of Diabetes, 2014, 38, S69.	0.4	0
135	17 - Role of Intestinal Microbiota in High Fat-High Sucrose Diet-Induced Insulin Resistance in Mice and Beneficial Effect of Saskatoon Berry Powder. Canadian Journal of Diabetes, 2019, 43, S7.	0.4	0
136	Antioxidant properties of regular- and whole wheat spaghetti and LC/MS analysis of their C-glycosyl flavones and secoisolariciresinol diglucoside. CFW Plexus, 2012, , .	0.0	0
137	CHAPTER 12. Types and Distribution of Phenolic Compounds in Grains. Food Chemistry, Function and Analysis, 2018, , 235-277.	0.1	0
138	CHAPTER 10. Non-digestible Oligosaccharides in Grain Products. Food Chemistry, Function and Analysis, 2018, , 204-217.	0.1	0
139	CHAPTER 13. Bound Phenolic Constituents as Co-passengers of Dietary Fibre. Food Chemistry, Function and Analysis, 2018, , 278-304.	0.1	0