Casper C Hoogenraad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3672223/publications.pdf

Version: 2024-02-01

223 papers

22,945 citations

80 h-index 10708

g-index

245 all docs

245 docs citations

times ranked

245

23923 citing authors

#	Article	IF	CITATIONS
1	Organization and dynamics of the cortical complexes controlling insulin secretion in \hat{l}^2 -cells. Journal of Cell Science, 2022, 135, .	1.2	11
2	Predictive high-throughput screening of PEGylated lipids in oligonucleotide-loaded lipid nanoparticles for neuronal gene silencing. Nanoscale Advances, 2022, 4, 2107-2123.	2.2	21
3	Stressâ€induced vesicular assemblies of dual leucine zipper kinase are signaling hubs involved in kinase activation and neurodegeneration. EMBO Journal, 2022, 41, .	3.5	7
4	Combined kinesin-1 and kinesin-3 activity drives axonal trafficking of TrkB receptors in Rab6 carriers. Developmental Cell, 2021, 56, 494-508.e7.	3.1	16
5	Centrosomeâ€mediated microtubule remodeling during axon formation in human iPSCâ€derived neurons. EMBO Journal, 2021, 40, e106798.	3.5	8
6	ER–Âlysosome contacts at a pre-axonal region regulate axonal lysosome availability. Nature Communications, 2021, 12, 4493.	5.8	32
7	Specific KIF1A–adaptor interactions control selective cargo recognition. Journal of Cell Biology, 2021, 220, .	2.3	24
8	WDR47 protects neuronal microtubule minus ends from katanin-mediated severing. Cell Reports, 2021, 36, 109371.	2.9	12
9	Inducible manipulation of motor–cargo interaction using engineered kinesin motors. Journal of Cell Science, 2021, 134, .	1.2	4
10	Multiple layers of spatial regulation coordinate axonal cargo transport. Current Opinion in Neurobiology, 2021, 69, 241-246.	2.0	6
11	Glucocorticoid and βâ€adrenergic regulation of hippocampal dendritic spines. Journal of Neuroendocrinology, 2020, 32, e12811.	1.2	11
12	Temporal Quantitative Proteomics of mGluR-induced Protein Translation and Phosphorylation in Neurons. Molecular and Cellular Proteomics, 2020, 19, 1952-1968.	2.5	12
13	Interleukin-17: A Social Cytokine. Cell, 2020, 181, 517-519.	13.5	10
14	Loss of BICD2 in muscle drives motor neuron loss in a developmental form of spinal muscular atrophy. Acta Neuropathologica Communications, 2020, 8, 34.	2.4	26
15	Microtubule Minus-End Binding Protein CAMSAP2 and Kinesin-14 Motor KIFC3 Control Dendritic Microtubule Organization. Current Biology, 2020, 30, 899-908.e6.	1.8	26
16	Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Nature Structural and Molecular Biology, 2020, 27, 210-220.	3.6	61
17	Tropomyosin Tpm3.1 Is Required to Maintain the Structure and Function of the Axon Initial Segment. IScience, 2020, 23, 101053.	1.9	21
18	Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. Journal of Proteome Research, 2020, 19, 2391-2403.	1.8	14

#	Article	IF	CITATIONS
19	Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nature Communications, 2020, 11, 571.	5.8	28
20	Cortical anchoring of the microtubule cytoskeleton is essential for neuron polarity. ELife, 2020, 9, .	2.8	26
21	Quantitative mapping of transcriptome and proteome dynamics during polarization of human iPSC-derived neurons. ELife, 2020, 9, .	2.8	14
22	The mechanism of kinesin inhibition by kinesin-binding protein. ELife, 2020, 9, .	2.8	15
23	Shank Proteins Couple the Endocytic Zone to the Postsynaptic Density to Control Trafficking and Signaling of Metabotropic Glutamate Receptor 5. Cell Reports, 2019, 29, 258-269.e8.	2.9	18
24	Solving the Mysteries of Dementia: FTD Mutant Tau Impairs Structural Axon Initial Segment Plasticity. Neuron, 2019, 104, 429-430.	3.8	0
25	VAPâ€SCRN1 interaction regulates dynamic endoplasmic reticulum remodeling and presynaptic function. EMBO Journal, 2019, 38, e101345.	3.5	53
26	Cytolinker Gas2L1 regulates axon morphology through microtubuleâ€modulated actin stabilization. EMBO Reports, 2019, 20, e47732.	2.0	45
27	Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo. Acta Neuropathologica Communications, 2019, 7, 162.	2.4	14
28	Feedback-Driven Assembly of the Axon Initial Segment. Neuron, 2019, 104, 305-321.e8.	3.8	54
29	SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron, 2019, 103, 217-234.e4.	3.8	518
30	The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain, 2019, 142, 1631-1643.	3.7	73
31	Endocannabinoid Signaling Mediates Local Dendritic Coordination between Excitatory and Inhibitory Synapses. Cell Reports, 2019, 27, 666-675.e5.	2.9	23
32	Wnt Signaling Directs Neuronal Polarity and Axonal Growth. IScience, 2019, 13, 318-327.	1.9	22
33	Semaphorin4D Induces Inhibitory Synapse Formation by Rapid Stabilization of Presynaptic Boutons via MET Coactivation. Journal of Neuroscience, 2019, 39, 4221-4237.	1.7	20
34	TRIM46 Organizes Microtubule Fasciculation in the Axon Initial Segment. Journal of Neuroscience, 2019, 39, 4864-4873.	1.7	38
35	MAP7 family proteins regulate kinesin-1 recruitment and activation. Journal of Cell Biology, 2019, 218, 1298-1318.	2.3	114
36	MAP7D2 Localizes to the Proximal Axon and Locally Promotes Kinesin-1-Mediated Cargo Transport into the Axon. Cell Reports, 2019, 26, 1988-1999.e6.	2.9	35

#	Article	IF	CITATIONS
37	Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity. Neuron, 2019, 102, 184-201.e8.	3.8	68
38	Neuronal Cytoskeleton: Presynaptic Boutons as Hotspots for Activity-Dependent Microtubule Nucleation. Current Biology, 2019, 29, R1307-R1309.	1.8	1
39	Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines. Neuron, 2018, 97, 1110-1125.e14.	3.8	68
40	Local mechanisms regulating selective cargo entry and long-range trafficking in axons. Current Opinion in Neurobiology, 2018, 51, 23-28.	2.0	34
41	Polarized trafficking: the palmitoylation cycle distributes cytoplasmic proteins to distinct neuronal compartments. Current Opinion in Cell Biology, 2018, 50, 64-71.	2.6	30
42	More is not always better: hyperglutamylation leads to neurodegeneration. EMBO Journal, 2018, 37, .	3.5	6
43	Local microtubule organization promotes cargo transport in <i>C. elegans</i> dendrites. Journal of Cell Science, 2018, 131, .	1.2	51
44	Modifying Rap1-signalling by targeting Pde6δ is neuroprotective in models of Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 50.	4.4	9
45	Membrane trafficking and cytoskeletal dynamics in neuronal function. Molecular and Cellular Neurosciences, 2018, 91, 1-2.	1.0	3
46	Polarity of Neuronal Membrane Traffic Requires Sorting of Kinesin Motor Cargo during Entry into Dendrites by a Microtubule-Associated Septin. Developmental Cell, 2018, 46, 204-218.e7.	3.1	65
47	Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites. Cell Reports, 2018, 24, 685-700.	2.9	64
48	APC2 controls dendrite development by promoting microtubule dynamics. Nature Communications, 2018, 9, 2773.	5.8	23
49	The HAUS Complex Is a Key Regulator of Non-centrosomal Microtubule Organization during Neuronal Development. Cell Reports, 2018, 24, 791-800.	2.9	75
50	Activity-Dependent Actin Remodeling at the Base of Dendritic Spines Promotes Microtubule Entry. Current Biology, 2018, 28, 2081-2093.e6.	1.8	57
51	Quantitative Map of Proteome Dynamics during Neuronal Differentiation. Cell Reports, 2017, 18, 1527-1542.	2.9	79
52	Inducible Control of mRNA Transport Using Reprogrammable RNA-Binding Proteins. ACS Synthetic Biology, 2017, 6, 950-956.	1.9	11
53	NGF-dependent axon growth and regeneration are altered in sympathetic neurons of dystrophic mdx mice. Molecular and Cellular Neurosciences, 2017, 80, 1-17.	1.0	13
54	DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells. Nature Methods, 2017, 14, 479-482.	9.0	49

#	Article	IF	CITATIONS
55	MAP2 Defines a Pre-axonal Filtering Zone to Regulate KIF1- versus KIF5-Dependent Cargo Transport in Sensory Neurons. Neuron, 2017, 94, 347-362.e7.	3.8	134
56	Robust, Sensitive, and Automated Phosphopeptide Enrichment Optimized for Low Sample Amounts Applied to Primary Hippocampal Neurons. Journal of Proteome Research, 2017, 16, 728-737.	1.8	117
57	Effects of early life stress on rodent hippocampal synaptic plasticity: a systematic review. Current Opinion in Behavioral Sciences, 2017, 14, 155-166.	2.0	9
58	Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization. Neuron, 2017, 94, 809-825.e7.	3.8	94
59	Efficient switching of mCherry fluorescence using chemical caging. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7013-7018.	3.3	19
60	Axonal transport deficits in multiple sclerosis: spiraling into the abyss. Acta Neuropathologica, 2017, 134, 1-14.	3.9	30
61	Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots. Nature Communications, 2017, 8, 14772.	5.8	65
62	Solubilization of human cells by the styrene–maleic acid copolymer: Insights from fluorescence microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2155-2160.	1.4	19
63	Antibodies to TRIM46 are associated with paraneoplastic neurological syndromes. Annals of Clinical and Translational Neurology, 2017, 4, 680-686.	1.7	38
64	Probing the Interplay between Dendritic Spine Morphology and Membrane-Bound Diffusion. Biophysical Journal, 2017, 113, 2261-2270.	0.2	26
65	Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport. Neuron, 2017, 96, 1264-1271.e5.	3.8	214
66	Kinesin-4 KIF21B is a potent microtubule pausing factor. ELife, 2017, 6, .	2.8	51
67	Myosin-V Induces Cargo Immobilization and Clustering at the Axon Initial Segment. Frontiers in Cellular Neuroscience, $2017,11,260.$	1.8	34
68	KIF5C S176 Phosphorylation Regulates Microtubule Binding and Transport Efficiency in Mammalian Neurons. Frontiers in Cellular Neuroscience, 2016, 10, 57.	1.8	24
69	Detection and Characterization of Autoantibodies to Neuronal Cell-Surface Antigens in the Central Nervous System. Frontiers in Molecular Neuroscience, 2016, 9, 37.	1.4	23
70	A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large. BMC Biology, 2016, 14, 66.	1.7	40
71	Tumour Suppressor Adenomatous Polyposis Coli (APC) localisation is regulated by both Kinesin-1 and Kinesin-2. Scientific Reports, 2016, 6, 27456.	1.6	34
72	Moving on: mobility for earlyâ€career neuroscientists. European Journal of Neuroscience, 2016, 44, 2285-2290.	1.2	0

#	Article	IF	Citations
73	Neuronal polarity: remodeling microtubule organization. Current Opinion in Neurobiology, 2016, 39, 1-7.	2.0	62
74	Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment. Journal of Neuroscience, 2016, 36, 4421-4433.	1.7	58
75	Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Developmental Cell, 2016, 39, 44-60.	3.1	114
76	Microtubule Organization and Microtubule-Associated Proteins (MAPs)., 2016,, 31-75.		7
77	Microtubuleâ€binding protein doublecortinâ€like kinase 1 (DCLK1) guides kinesinâ€3â€mediated cargo transport to dendrites. EMBO Journal, 2016, 35, 302-318.	3 . 5	142
78	Three-Step Model for Polarized Sorting of KIF17 into Dendrites. Current Biology, 2016, 26, 1705-1712.	1.8	30
79	Bicaudal D Family of Motor Adaptors: Linking Dynein Motility to Cargo Binding. Trends in Cell Biology, 2016, 26, 327-340.	3.6	93
80	Live imaging of microtubule dynamics in organotypic hippocampal slice cultures. Methods in Cell Biology, 2016, 131, 107-126.	0.5	11
81	Dendrites <i>In Vitro</i> and <i>In Vivo</i> Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation. Journal of Neuroscience, 2016, 36, 1071-1085.	1.7	164
82	Heterozygous <i>KIDINS220/ARMS</i> nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity. Human Molecular Genetics, 2016, 25, 2158-2167.	1.4	37
83	Rotarod motor performance and advanced spinal cord lesion image analysis refine assessment of neurodegeneration in experimental autoimmune encephalomyelitis. Journal of Neuroscience Methods, 2016, 262, 66-76.	1.3	19
84	Dynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment. Neuron, 2016, 89, 461-471.	3.8	107
85	Light-controlled intracellular transport in Caenorhabditis elegans. Current Biology, 2016, 26, R153-R154.	1.8	44
86	Microtubule plus-end tracking proteins in neuronal development. Cellular and Molecular Life Sciences, 2016, 73, 2053-2077.	2.4	76
87	Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity. Current Biology, 2016, 26, 849-861.	1.8	82
88	Right Time, Right Place: Probing the Functions of Organelle Positioning. Trends in Cell Biology, 2016, 26, 121-134.	3.6	81
89	Studying neuronal microtubule organization and microtubule-associated proteins using single molecule localization microscopy. Methods in Cell Biology, 2016, 131, 127-149.	0.5	25
90	Effects of Early Life Stress on Synaptic Plasticity in the Developing Hippocampus of Male and Female Rats. PLoS ONE, 2016, 11, e0164551.	1.1	60

#	Article	IF	Citations
91	Cytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders. Frontiers in Neuroscience, 2015, 9, 397.	1.4	33
92	The axonal cytoskeleton: from organization to function. Frontiers in Molecular Neuroscience, 2015, 8, 44.	1.4	137
93	TRIM46 Controls Neuronal Polarity and Axon Specification by Driving the Formation of Parallel Microtubule Arrays. Neuron, 2015, 88, 1208-1226.	3.8	170
94	Lrig2 Negatively Regulates Ectodomain Shedding of Axon Guidance Receptors by ADAM Proteases. Developmental Cell, 2015, 35, 537-552.	3.1	46
95	Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture. Cell Reports, 2015, 13, 933-943.	2.9	104
96	Plasticity-related gene 5: A novel surface autoantigen in paraneoplastic cerebellar degeneration. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e156.	3.1	13
97	Optogenetic control of organelle transport and positioning. Nature, 2015, 518, 111-114.	13.7	254
98	Microtubule Minus-End-Targeting Proteins. Current Biology, 2015, 25, R162-R171.	1.8	172
99	Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS. Journal of Neuroscience, 2015, 35, 8359-8375.	1.7	50
100	The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far?. Experimental Cell Research, 2015, 335, 180-186.	1.2	29
101	The Hitchhiker's Guide to a Neuroscience Career. Neuron, 2015, 86, 613-616.	3.8	3
102	Building the Neuronal Microtubule Cytoskeleton. Neuron, 2015, 87, 492-506.	3.8	502
103	Resolving bundled microtubules using anti-tubulin nanobodies. Nature Communications, 2015, 6, 7933.	5.8	174
104	Single Molecule Localization Microscopy to Study Neuronal Microtubule Organization. Neuromethods, 2015, , 389-408.	0.2	0
105	Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Frontiers in Neuroanatomy, 2014, 8, 142.	0.9	51
106	A role for Bicaudal-D2 in radial cerebellar granule cell migration. Nature Communications, 2014, 5, 3411.	5.8	44
107	Bicaudal D Family Adaptor Proteins Control the Velocity of Dynein-Based Movements. Cell Reports, 2014, 8, 1248-1256.	2.9	101
108	Identification of (i) Srp9 (i) as a febrile seizure susceptibility gene. Annals of Clinical and Translational Neurology, 2014, 1, 239-250.	1.7	18

#	Article	IF	Citations
109	New insights into mRNA trafficking in axons. Developmental Neurobiology, 2014, 74, 233-244.	1.5	29
110	Microtubule Minus-End Stabilization by Polymerization-Driven CAMSAP Deposition. Developmental Cell, 2014, 28, 295-309.	3.1	235
111	Molecular and cellular mechanisms underlying anti-neuronal antibody mediated disorders of the central nervous system. Autoimmunity Reviews, 2014, 13, 299-312.	2.5	58
112	Axon and dendritic trafficking. Current Opinion in Neurobiology, 2014, 27, 165-170.	2.0	96
113	Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature, 2014, 505, 108-111.	13.7	103
114	The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis. Developmental Neurobiology, 2014, 74, 1226-1242.	1.5	24
115	The intracellular redox protein MICAL-1 regulates the development of hippocampal mossy fibre connections. Nature Communications, 2014, 5, 4317.	5.8	49
116	Golgi fragmentation precedes neuromuscular denervation and is associated with endosome abnormalities in SOD1-ALS mouse motor neurons. Acta Neuropathologica Communications, 2014, 2, 38.	2.4	43
117	The GRIP1/14-3-3 Pathway Coordinates Cargo Trafficking and Dendrite Development. Developmental Cell, 2014, 28, 381-393.	3.1	55
118	Microtubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development. Neuron, 2014, 82, 1058-1073.	3.8	193
119	Amyotrophic lateral sclerosis (ALS)-associated VAPB-P56S inclusions represent an ER quality control compartment. Acta Neuropathologica Communications, 2013, 1, 24.	2.4	46
120	Shape-Induced Asymmetric Diffusion in Dendritic Spines Allows Efficient Synaptic AMPA Receptor Trapping. Biophysical Journal, 2013, 105, 2743-2750.	0.2	50
121	Slide to the Left and Slide to the Right: Motor Coordination in Neurons. Developmental Cell, 2013, 26, 326-328.	3.1	4
122	CFEOM1-Associated Kinesin KIF21A Is a Cortical Microtubule Growth Inhibitor. Developmental Cell, 2013, 27, 145-160.	3.1	157
123	TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites. Neuron, 2013, 77, 485-502.	3.8	336
124	Myosin-V Opposes Microtubule-Based Cargo Transport and Drives Directional Motility on Cortical Actin. Current Biology, 2013, 23, 828-834.	1.8	59
125	Stress and excitatory synapses: From health to disease. Neuroscience, 2013, 248, 626-636.	1,1	101
126	Microtubule-based transport – basic mechanisms, traffic rules and role in neurological pathogenesis. Journal of Cell Science, 2013, 126, 2319-29.	1.2	177

#	Article	IF	Citations
127	Spatio-temporal Analysis of Molecular Determinants of Neuronal Degeneration in the Aging Mouse Cerebellum. Molecular and Cellular Proteomics, 2013, 12, 1350-1362.	2.5	28
128	The ALS8 protein VAPB interacts with the ER–Golgi recycling protein YIF1A and regulates membrane delivery into dendrites. EMBO Journal, 2013, 32, 2056-2072.	3.5	58
129	Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochemical Society Transactions, 2013, 41, 1605-1612.	1.6	79
130	Liprin-α2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. Journal of Cell Biology, 2013, 201, 915-928.	2.3	98
131	The Kinesin-2 Family Member KIF3C Regulates Microtubule Dynamics and Is Required for Axon Growth and Regeneration. Journal of Neuroscience, 2013, 33, 11329-11345.	1.7	67
132	The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. EMBO Journal, 2013, 33, n/a-n/a.	3.5	122
133	Off the rails: axonal cargoes on the road to nowhere. EMBO Journal, 2013, 32, 1345-1347.	3.5	0
134	Structural basis of tubulin tyrosination by tubulin tyrosine ligase. Journal of Cell Biology, 2013, 200, 259-270.	2.3	189
135	Psychiatric phenomena as initial manifestation of encephalitis by antiâ€NMDAR antibodies. Acta Neuropsychiatrica, 2013, 25, 128-136.	1.0	32
136	Developmental and Activity-Dependent miRNA Expression Profiling in Primary Hippocampal Neuron Cultures. PLoS ONE, 2013, 8, e74907.	1.1	69
137	BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Molecular Biology of the Cell, 2012, 23, 4226-4241.	0.9	231
138	Combined \hat{I}^2 -adrenergic and corticosteroid receptor activation regulates AMPA receptor function in hippocampal neurons. Journal of Psychopharmacology, 2012, 26, 516-524.	2.0	25
139	Microtubule Plus-End Tracking Proteins SLAIN1/2 and ch-TOG Promote Axonal Development. Journal of Neuroscience, 2012, 32, 14722-14728a.	1.7	44
140	Molecular Motors in Cargo Trafficking and Synapse Assembly. Advances in Experimental Medicine and Biology, 2012, 970, 173-196.	0.8	29
141	Identification of delta/notchâ€like epidermal growth factorâ€related receptor as the Tr antigen in paraneoplastic cerebellar degeneration. Annals of Neurology, 2012, 71, 815-824.	2.8	136
142	Lentiviral Transgenesis. Methods in Molecular Biology, 2011, 693, 117-142.	0.4	9
143	Liprin-Mediated Large Signaling Complex Organization Revealed by the Liprin-α/CASK and Liprin-α/Liprin-β Complex Structures. Molecular Cell, 2011, 43, 586-598.	4.5	85
144	Which way to go? Cytoskeletal organization and polarized transport in neurons. Molecular and Cellular Neurosciences, 2011, 46, 9-20.	1.0	213

#	Article	IF	CITATIONS
145	Centrosomes, microtubules and neuronal development. Molecular and Cellular Neurosciences, 2011, 48, 349-358.	1.0	135
146	New insights in endosomal dynamics and AMPA receptor trafficking. Seminars in Cell and Developmental Biology, 2011, 22, 499-505.	2.3	55
147	Spinal Inhibitory Interneuron Pathology Follows Motor Neuron Degeneration Independent of Glial Mutant Superoxide Dismutase 1 Expression in SOD1-ALS Mice. Journal of Neuropathology and Experimental Neurology, 2011, 70, 662-677.	0.9	55
148	Rab6, Rab8, and MICAL3 Cooperate in Controlling Docking and Fusion of Exocytotic Carriers. Current Biology, 2011, 21, 967-974.	1.8	167
149	Microtubule Stabilization Reduces Scarring and Causes Axon Regeneration After Spinal Cord Injury. Science, 2011, 331, 928-931.	6.0	503
150	IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo. Annals of Neurology, 2011, 69, 455-463.	2.8	132
151	Differential expression of liprina $\widehat{\mathfrak{el}}_{\pm}$ family proteins in the brain suggests functional diversification. Journal of Comparative Neurology, 2011, 519, 3040-3060.	0.9	47
152	NMDA Receptor Activation Suppresses Microtubule Growth and Spine Entry. Journal of Neuroscience, 2011, 31, 8194-8209.	1.7	101
153	Maintenance of Dendritic Spine Morphology by Partitioning-Defective 1b through Regulation of Microtubule Growth. Journal of Neuroscience, 2011, 31, 12094-12103.	1.7	34
154	SLAIN2 links microtubule plus end–tracking proteins and controls microtubule growth in interphase. Journal of Cell Biology, 2011, 193, 1083-1099.	2.3	116
155	ÂCaMKII Plays a Nonenzymatic Role in Hippocampal Synaptic Plasticity and Learning by Targeting ÂCaMKII to Synapses. Journal of Neuroscience, 2011, 31, 10141-10148.	1.7	105
156	CLIP-170 and IQGAP1 Cooperatively Regulate Dendrite Morphology. Journal of Neuroscience, 2011, 31, 4555-4568.	1.7	90
157	Isolation of Novel +TIPs and Their Binding Partners Using Affinity Purification Techniques. Methods in Molecular Biology, 2011, 777, 293-316.	0.4	4
158	Absence of Common Somatic Alterations in Genes on 1p and 19q in Oligodendrogliomas. PLoS ONE, 2011, 6, e22000.	1.1	13
159	Synapse Pathology in Psychiatric and Neurologic Disease. Current Neurology and Neuroscience Reports, 2010, 10, 207-214.	2.0	294
160	Mixed Microtubules Steer Dynein-Driven Cargo Transport into Dendrites. Current Biology, 2010, 20, 290-299.	1.8	281
161	In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends. Current Biology, 2010, 20, 1717-1722.	1.8	130
162	Integrated genomic profiling identifies candidate genes implicated in gliomaâ€genesis and a novel <i>LEO1</i> â€ <i>SLC12A1</i> fusion gene. Genes Chromosomes and Cancer, 2010, 49, 509-517.	1.5	25

#	Article	IF	CITATIONS
163	Segregation of non-p.R132H mutations in <i>IDH1</i> ii distinct molecular subtypes of glioma. Human Mutation, 2010, 31, E1186-E1199.	1.1	90
164	Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory. Nature Reviews Neuroscience, 2010, 11, 675-681.	4.9	164
165	The CASPR2 cell adhesion molecule functions as a tumor suppressor gene in glioma. Oncogene, 2010, 29, 6138-6148.	2.6	28
166	Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis. EMBO Journal, 2010, 29, 1637-1651.	3.5	144
167	GRASP-1 regulates endocytic receptor recycling and synaptic plasticity. Communicative and Integrative Biology, 2010, 3, 433-435.	0.6	12
168	Dendritic Spine Plasticity: New Regulatory Roles of Dynamic Microtubules. Neuroscientist, 2010, 16, 650-661.	2.6	32
169	Axon Extension Occurs Independently of Centrosomal Microtubule Nucleation. Science, 2010, 327, 704-707.	6.0	243
170	A VAPB mutant linked to amyotrophic lateral sclerosis generates a novel form of organized smooth endoplasmic reticulum. FASEB Journal, 2010, 24, 1419-1430.	0.2	98
171	Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes. PLoS Biology, 2010, 8, e1000283.	2.6	86
172	Bicaudal D2, Dynein, and Kinesin-1 Associate with Nuclear Pore Complexes and Regulate Centrosome and Nuclear Positioning during Mitotic Entry. PLoS Biology, 2010, 8, e1000350.	2.6	268
173	Probing Intracellular Motor Protein Activity Using an Inducible Cargo Trafficking Assay. Biophysical Journal, 2010, 99, 2143-2152.	0.2	147
174	Microtubule Dynamics in Dendritic Spines. Methods in Cell Biology, 2010, 97, 111-132.	0.5	67
175	Actin in dendritic spines: connecting dynamics to function. Journal of Cell Biology, 2010, 189, 619-629.	2.3	691
176	Actin in dendritic spines: connecting dynamics to function. Journal of Experimental Medicine, 2010, 207, i18-i18.	4.2	2
177	Hormonal regulation of AMPA receptor trafficking and memory formation. Frontiers in Synaptic Neuroscience, 2009, 1, 2.	1.3	7
178	Control of neuronal polarity and plasticity – a renaissance for microtubules?. Trends in Cell Biology, 2009, 19, 669-676.	3.6	152
179	βCaMKII controls the direction of plasticity at parallel fiber–Purkinje cell synapses. Nature Neuroscience, 2009, 12, 823-825.	7.1	116
180	Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity. Neuron, 2009, 61, 85-100.	3.8	570

#	Article	IF	Citations
181	Basic mechanisms for recognition and transport of synaptic cargos. Molecular Brain, 2009, 2, 25.	1.3	75
182	Mammalian end binding proteins control persistent microtubule growth. Journal of Cell Biology, 2009, 184, 691-706.	2.3	331
183	Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity. PLoS ONE, 2009, 4, e4714.	1.1	113
184	A unique residue in rab3c determines the interaction with novel binding protein Zwintâ€1. FEBS Letters, 2008, 582, 2838-2842.	1.3	26
185	STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER. Current Biology, 2008, 18, 177-182.	1.8	378
186	Microtubule-Driven Multimerization Recruits ase1p onto Overlapping Microtubules. Current Biology, 2008, 18, 1713-1717.	1.8	89
187	Microtubule plus-end tracking proteins in differentiated mammalian cells. International Journal of Biochemistry and Cell Biology, 2008, 40, 619-637.	1.2	57
188	A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice. Human Molecular Genetics, 2008, 17, 2849-2862.	1.4	77
189	Neuron-Specific Expression of Mutant Superoxide Dismutase Is Sufficient to Induce Amyotrophic Lateral Sclerosis in Transgenic Mice. Journal of Neuroscience, 2008, 28, 2075-2088.	1.7	219
190	Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. Journal of Cell Biology, 2007, 176, 497-507.	2.3	84
191	Motor Neuron Disease-Associated Mutant Vesicle-Associated Membrane Protein-Associated Protein (VAP) B Recruits Wild-Type VAPs into Endoplasmic Reticulum-Derived Tubular Aggregates. Journal of Neuroscience, 2007, 27, 9801-9815.	1.7	203
192	Liprin- $\hat{l}\pm$ proteins: scaffold molecules for synapse maturation. Biochemical Society Transactions, 2007, 35, 1278-1282.	1.6	130
193	The Postsynaptic Architecture of Excitatory Synapses: A More Quantitative View. Annual Review of Biochemistry, 2007, 76, 823-847.	5.0	836
194	Liprin $\hat{l}\pm 1$ Degradation by Calcium/Calmodulin-Dependent Protein Kinase II Regulates LAR Receptor Tyrosine Phosphatase Distribution and Dendrite Development. Developmental Cell, 2007, 12, 587-602.	3.1	87
195	Rab6 Regulates Transport and Targeting of Exocytotic Carriers. Developmental Cell, 2007, 13, 305-314.	3.1	295
196	Rab6 is increased in Alzheimer's disease brain and correlates with endoplasmic reticulum stress. Neuropathology and Applied Neurobiology, 2007, 33, 070615152525001-???.	1.8	60
197	A role for the Rab6B Bicaudal–D1 interaction in retrograde transport in neuronal cells. Experimental Cell Research, 2007, 313, 3408-3420.	1.2	59
198	Contribution of CYLN2 and GTF2IRD1 to neurological and cognitive symptoms in Williams Syndrome. Neurobiology of Disease, 2007, 26, 112-124.	2.1	67

#	Article	IF	CITATIONS
199	GSK-3Î ² -regulated interaction of BICD with dynein is involved in microtubule anchorage at centrosome. EMBO Journal, 2006, 25, 5670-5682.	3.5	79
200	Generation of lentiviral transgenic rats expressing Glutamate Receptor Interacting Protein 1 (GRIP1) in brain, spinal cord and testis. Journal of Neuroscience Methods, 2006, 152, 1-9.	1.3	15
201	Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum. Molecular and Cellular Proteomics, 2006, 5, 1158-1170.	2.5	440
202	ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. European Journal of Neuroscience, 2005, 22, 1881-1894.	1.2	102
203	GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nature Neuroscience, 2005, 8, 906-915.	7.1	199
204	Microtubule plus-end-tracking proteins: mechanisms and functions. Current Opinion in Cell Biology, 2005, 17, 47-54.	2.6	278
205	The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis. Genes and Development, 2005, 19, 2501-2515.	2.7	101
206	Control of Dendritic Arborization by the Phosphoinositide-3'-Kinase-Akt-Mammalian Target of Rapamycin Pathway. Journal of Neuroscience, 2005, 25, 11300-11312.	1.7	537
207	LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nature Neuroscience, 2005, 8, 458-467.	7.1	249
208	Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. Journal of Cell Biology, 2004, 166, 1003-1014.	2.3	159
209	LIMK1 and CLIP-115: linking cytoskeletal defects to Williams syndrome. BioEssays, 2004, 26, 141-150.	1.2	83
210	The return of the exocyst. Nature Cell Biology, 2003, 5, 493-495.	4.6	6
211	Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO Journal, 2003, 22, 6004-6015.	3.5	196
212	Deformation of Network Connectivity in the Inferior Olive of Connexin 36-Deficient Mice Is Compensated by Morphological and Electrophysiological Changes at the Single Neuron Level. Journal of Neuroscience, 2003, 23, 4700-4711.	1.7	140
213	Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein) Tj ETQq $1\ 1$	0.784314	ŀrgβT/Ove
214	LIS1, CLIP-170's Key to the Dynein/Dynactin Pathway. Molecular and Cellular Biology, 2002, 22, 3089-3102.	1.1	222
215	Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex. Nature Cell Biology, 2002, 4, 986-992.	4.6	357
216	Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nature Genetics, 2002, 32, 116-127.	9.4	163

#	Article	IF	CITATIONS
217	Origin of Vestibular Dysfunction in Usher Syndrome Type 1B. Neurobiology of Disease, 2001, 8, 69-77.	2.1	9
218	CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation of Microtubule Dynamics in Motile Fibroblasts. Cell, 2001, 104, 923-935.	13.5	462
219	Hereditary Familial Vestibular Degenerative Diseases. Annals of the New York Academy of Sciences, 2001, 942, 493-496.	1.8	2
220	Microcircuitry and function of the inferior olive. Trends in Neurosciences, 1998, 21, 391-400.	4.2	404
221	The MurineCYLN2Gene: Genomic Organization, Chromosome Localization, and Comparison to the Human Gene That Is Located within the $7q11.23$ Williams Syndrome Critical Region. Genomics, 1998, 53, 348-358.	1.3	52
222	CLIP-115, a Novel Brain-Specific Cytoplasmic Linker Protein, Mediates the Localization of Dendritic Lamellar Bodies. Neuron, 1997, 19, 1187-1199.	3.8	97
223	Polarity of Neuronal Membrane Traffic Requires Sorting of Kinesin Motorcargo During Entry into Dendrites by a Microtubule-Associated Septin. SSRN Electronic Journal, 0, , .	0.4	0