
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3672042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contribution of citizen science towards international biodiversity monitoring. Biological Conservation, 2017, 213, 280-294.	1.9	480
2	Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information, 2015, 4, 199-219.	1.4	429
3	Mapping global cropland and field size. Global Change Biology, 2015, 21, 1980-1992.	4.2	404
4	Quality assessment for building footprints data on OpenStreetMap. International Journal of Geographical Information Science, 2014, 28, 700-719.	2.2	381
5	Citizen science and the United Nations Sustainable Development Goals. Nature Sustainability, 2019, 2, 922-930.	11.5	378
6	A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. International Journal of Geographical Information Science, 2015, 29, 667-689.	2.2	292
7	The Street Network Evolution of Crowdsourced Maps: OpenStreetMap in Germany 2007–2011. Future Internet, 2012, 4, 1-21.	2.4	287
8	Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover. Remote Sensing, 2009, 1, 345-354.	1.8	284
9	Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information. ISPRS International Journal of Geo-Information, 2016, 5, 55.	1.4	282
10	Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Planetary Health, The, 2017, 1, e33-e42.	5.1	268
11	A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis. Transactions in GIS, 2014, 18, 877-895.	1.0	264
12	WUDAPT: An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene. Bulletin of the American Meteorological Society, 2018, 99, 1907-1924.	1.7	254
13	Geo-Wiki: An online platform for improving global land cover. Environmental Modelling and Software, 2012, 31, 110-123.	1.9	249
14	Analyzing the Contributor Activity of a Volunteered Geographic Information Project — The Case of OpenStreetMap. ISPRS International Journal of Geo-Information, 2012, 1, 146-165.	1.4	243
15	Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes, 2000, 14, 2157-2172.	1.1	229
16	A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fennica, 2008, 42, .	0.5	218
17	Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning. Physics and Chemistry of the Earth, 2006, 31, 1164-1171.	1.2	210
18	Mapping citizen science contributions to the UN sustainable development goals. Sustainability Science, 2020, 15, 1735-1751.	2.5	195

#	Article	IF	CITATIONS
19	Fine-resolution population mapping using OpenStreetMap points-of-interest. International Journal of Geographical Information Science, 2014, 28, 1940-1963.	2.2	184
20	A comparison of global agricultural monitoring systems and current gaps. Agricultural Systems, 2019, 168, 258-272.	3.2	183
21	Assessing the land resource–food price nexus of the Sustainable Development Goals. Science Advances, 2016, 2, e1501499.	4.7	162
22	Highlighting continued uncertainty in global land cover maps for the user community. Environmental Research Letters, 2011, 6, 044005.	2.2	161
23	Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. International Journal of Remote Sensing, 2010, 31, 2237-2256.	1.3	158
24	Generating WUDAPT Level 0 data – Current status of production and evaluation. Urban Climate, 2019, 27, 24-45.	2.4	148
25	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.	3.4	147
26	Land management: data availability and process understanding for global change studies. Global Change Biology, 2017, 23, 512-533.	4.2	142
27	Comparing the Quality of Crowdsourced Data Contributed by Expert and Non-Experts. PLoS ONE, 2013, 8, e69958.	1.1	139
28	Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Cover for different applications. Global Change Biology, 2008, 14, 1057-1075.	4.2	138
29	An Advanced Systematic Literature Review on Spatiotemporal Analyses of <scp>T</scp> witter Data. Transactions in GIS, 2015, 19, 809-834.	1.0	136
30	Land consolidation in Cyprus: Why is an Integrated Planning and Decision Support System required?. Land Use Policy, 2012, 29, 131-142.	2.5	130
31	Agricultural diversification as an important strategy for achieving food security in Africa. Global Change Biology, 2018, 24, 3390-3400.	4.2	130
32	A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal, 2000, 45, 523-536.	1.2	129
33	Applying soft computing approaches to river level forecasting. Hydrological Sciences Journal, 1999, 44, 763-778.	1.2	127
34	Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity, 2009, 6, 80-101.	1.4	125
35	Neural correlates of individual differences in affective benefit of real-life urban green space exposure. Nature Neuroscience, 2019, 22, 1389-1393.	7.1	125
36	A cultivated planet in 2010 – Part 2: The global gridded agricultural-production maps. Earth System Science Data, 2020, 12, 3545-3572.	3.7	122

#	Article	lF	CITATIONS
37	Comparison of Volunteered Geographic Information Data Contributions and Community Development for Selected World Regions. Future Internet, 2013, 5, 282-300.	2.4	118
38	Toward mapping land-use patterns from volunteered geographic information. International Journal of Geographical Information Science, 2013, 27, 2264-2278.	2.2	117
39	Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103, 48-56.	4.9	117
40	A global dataset of crowdsourced land cover and land use reference data. Scientific Data, 2017, 4, 170075.	2.4	112
41	Global bioenergy scenarios – Future forest development, land-use implications, and trade-offs. Biomass and Bioenergy, 2013, 57, 86-96.	2.9	110
42	Using control data to determine the reliability of volunteered geographic information about land cover. International Journal of Applied Earth Observation and Geoinformation, 2013, 23, 37-48.	1.4	109
43	Estimating the global distribution of field size using crowdsourcing. Global Change Biology, 2019, 25, 174-186.	4.2	108
44	Harmonizing and Combining Existing Land Cover/Land Use Datasets for Cropland Area Monitoring at the African Continental Scale. Remote Sensing, 2013, 5, 19-41.	1.8	105
45	Improved global cropland data as an essential ingredient for food security. Global Food Security, 2015, 4, 37-45.	4.0	103
46	A new methodology for measuring land fragmentation. Computers, Environment and Urban Systems, 2013, 39, 71-80.	3.3	100
47	Quality Evaluation of VGI Using Authoritative Data—A Comparison with Land Use Data in Southern Germany. ISPRS International Journal of Geo-Information, 2015, 4, 1657-1671.	1.4	98
48	Comparison of land cover maps using fuzzy agreement. International Journal of Geographical Information Science, 2005, 19, 787-807.	2.2	97
49	Assessing the Accuracy of Volunteered Geographic Information arising from Multiple Contributors to an Internet Based Collaborative Project. Transactions in GIS, 2013, 17, 847-860.	1.0	97
50	Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sensing of Environment, 2015, 162, 208-220.	4.6	97
51	Crime reduction through simulation: An agent-based model of burglary. Computers, Environment and Urban Systems, 2010, 34, 236-250.	3.3	92
52	Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination. Journal of Hydrology, 2011, 406, 199-214.	2.3	90
53	Crowdsourcing Methods for Data Collection in Geophysics: State of the Art, Issues, and Future Directions. Reviews of Geophysics, 2018, 56, 698-740.	9.0	90
54	City-descriptive input data for urban climate models: Model requirements, data sources and challenges. Urban Climate, 2020, 31, 100536.	2.4	90

#	Article	IF	CITATIONS
55	Usability of VGI for validation of land cover maps. International Journal of Geographical Information Science, 2015, 29, 1269-1291.	2.2	89
56	Cropland for sub-Saharan Africa: A synergistic approach using five land cover data sets. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	87
57	Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps. Remote Sensing, 2015, 7, 7959-7986.	1.8	87
58	Evidence for Urban–Rural Disparity in Temperature–Mortality Relationships in Zhejiang Province, China. Environmental Health Perspectives, 2019, 127, 37001.	2.8	83
59	Classification of Local Climate Zones Using SAR and Multispectral Data in an Arid Environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 3097-3105.	2.3	81
60	Open land cover from OpenStreetMap and remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2017, 63, 206-213.	1.4	81
61	Spatial distribution of arable and abandoned land across former Soviet Union countries. Scientific Data, 2018, 5, 180056.	2.4	81
62	Exploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks. International Journal of Geographical Information Science, 2016, 30, 1694-1716.	2.2	80
63	Towards Automatic Vandalism Detection in OpenStreetMap. ISPRS International Journal of Geo-Information, 2012, 1, 315-332.	1.4	79
64	A Review of Citizen Science and Crowdsourcing in Applications of Pluvial Flooding. Frontiers in Earth Science, 2019, 7, .	0.8	76
65	Mapping the effects of drought on child stunting. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17219-17224.	3.3	75
66	A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in situ information. Journal of Land Use Science, 2011, 6, 245-259.	1.0	70
67	Spatial Accuracy Assessment and Integration of Global Land Cover Datasets. Remote Sensing, 2015, 7, 15804-15821.	1.8	68
68	A dataset of forest biomass structure for Eurasia. Scientific Data, 2017, 4, 170070.	2.4	68
69	Multi-model data fusion for hydrological forecasting. Computers and Geosciences, 2001, 27, 987-994.	2.0	67
70	African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption. Global Change Biology, 2014, 20, 1278-1288.	4.2	67
71	Quality of Crowdsourced Data on Urban Morphology—The Human Influence Experiment (HUMINEX). Urban Science, 2017, 1, 15.	1.1	67
72	The Need for Improved Maps of Global Cropland. Eos, 2013, 94, 31-32.	0.1	66

#	Article	IF	CITATIONS
73	Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki. Technological Forecasting and Social Change, 2015, 98, 324-335.	6.2	66
74	Contributing to WUDAPT: A Local Climate Zone Classification of Two Cities in Ukraine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 1841-1853.	2.3	65
75	Technologies to Support Community Flood Disaster Risk Reduction. International Journal of Disaster Risk Science, 2016, 7, 198-204.	1.3	63
76	The evolution of humanitarian mapping within the OpenStreetMap community. Scientific Reports, 2021, 11, 3037.	1.6	61
77	Investigating the Feasibility of Geo-Tagged Photographs as Sources of Land Cover Input Data. ISPRS International Journal of Geo-Information, 2016, 5, 64.	1.4	58
78	Generating Up-to-Date and Detailed Land Use and Land Cover Maps Using OpenStreetMap and GlobeLand30. ISPRS International Journal of Geo-Information, 2017, 6, 125.	1.4	58
79	Volunteered geographic information research in the first decade: a narrative review of selected journal articles in GIScience. International Journal of Geographical Information Science, 2020, 34, 1765-1791.	2.2	58
80	Quality Assessment of the Contributed Land Use Information from OpenStreetMap Versus Authoritative Datasets. Lecture Notes in Geoinformation and Cartography, 2015, , 37-58.	0.5	57
81	Formal definition of a user-adaptive and length-optimal routing graph for complex indoor environments. Geo-Spatial Information Science, 2011, 14, 119-128.	2.4	56
82	Economic Development and Forest Cover: Evidence from Satellite Data. Scientific Reports, 2017, 7, 40678.	1.6	56
83	Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model. Journal of Hydroinformatics, 1999, 1, 103-114.	1.1	52
84	A Unified Cropland Layer at 250 m for Global Agriculture Monitoring. Data, 2016, 1, 3.	1.2	52
85	Assessing quality of volunteer crowdsourcing contributions: lessons from the Cropland Capture game. International Journal of Digital Earth, 2016, 9, 410-426.	1.6	52
86	Investigating the role of saliency analysis with a neural network rainfall-runoff model. Computers and Geosciences, 2001, 27, 921-928.	2.0	50
87	A Combined Satellite-Derived Drought Indicator to Support Humanitarian Aid Organizations. Remote Sensing, 2016, 8, 340.	1.8	48
88	The Role of Citizen Science in Earth Observation. Remote Sensing, 2017, 9, 357.	1.8	48
89	Characterizing the Spatial and Temporal Availability of Very High Resolution Satellite Imagery in Google Earth and Microsoft Bing Maps as a Source of Reference Data. Land, 2018, 7, 118.	1.2	48
90	A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Scientific Data, 2017, 4, 170136.	2.4	46

#	Article	IF	CITATIONS
91	Improved Estimates of Biomass Expansion Factors for Russian Forests. Forests, 2018, 9, 312.	0.9	46
92	Assessing the suitability of GlobeLand30 for mapping land cover in Germany. International Journal of Digital Earth, 2016, 9, 873-891.	1.6	45
93	A Parcel Shape Index for Use in Land Consolidation Planning. Transactions in GIS, 2013, 17, 861-882.	1.0	44
94	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	2.4	44
95	Pathway using WUDAPT's Digital Synthetic City tool towards generating urban canopy parameters for multi-scale urban atmospheric modeling. Urban Climate, 2019, 28, 100459.	2.4	43
96	Mapping certified forests for sustainable management - A global tool for information improvement through participatory and collaborative mapping. Forest Policy and Economics, 2017, 83, 10-18.	1.5	41
97	Monitoring and Assessing Post-Disaster Tourism Recovery Using Geotagged Social Media Data. ISPRS International Journal of Geo-Information, 2017, 6, 144.	1.4	41
98	Integrated Participatory and Collaborative Risk Mapping for Enhancing Disaster Resilience. ISPRS International Journal of Geo-Information, 2018, 7, 68.	1.4	41
99	Crowdsourcing In-Situ Data on Land Cover and Land Use Using Gamification and Mobile Technology. Remote Sensing, 2016, 8, 905.	1.8	40
100	A System for Generating Customized Pleasant Pedestrian Routes Based on OpenStreetMap Data. Sensors, 2018, 18, 3794.	2.1	40
101	Developing a rapid method for 3-dimensional urban morphology extraction using open-source data. Sustainable Cities and Society, 2020, 53, 101962.	5.1	39
102	Addressing the need for improved land cover map products for policy support. Environmental Science and Policy, 2020, 112, 28-35.	2.4	39
103	An Introduction to OpenStreetMap in Geographic Information Science: Experiences, Research, and Applications. Lecture Notes in Geoinformation and Cartography, 2015, , 1-15.	0.5	39
104	Using an Agent-Based Crime Simulation to Predict the Effects of Urban Regeneration on Individual Household Burglary Risk. Environment and Planning B: Planning and Design, 2013, 40, 405-426.	1.7	38
105	Russian forest sequesters substantially more carbon than previously reported. Scientific Reports, 2021, 11, 12825.	1.6	38
106	A spatial genetic algorithm for automating land partitioning. International Journal of Geographical Information Science, 2013, 27, 2391-2409.	2.2	37
107	Efficient Method for POI/ROI Discovery Using Flickr Geotagged Photos. ISPRS International Journal of Geo-Information, 2018, 7, 121.	1.4	37
108	An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment. Hydrological Processes, 2002, 16, 1033-1046.	1.1	36

#	Article	IF	CITATIONS
109	A spatial statistical analysis of the occurrence of earthquakes along the Red Sea floor spreading: clusters of seismicity. Arabian Journal of Geosciences, 2014, 7, 2893-2904.	0.6	36
110	A taxonomy of quality assessment methods for volunteered and crowdsourced geographic information. Transactions in GIS, 2018, 22, 542-560.	1.0	36
111	Mapping Human Settlements with Higher Accuracy and Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning. Remote Sensing, 2019, 11, 1799.	1.8	36
112	A Conceptual Framework for Assessing the Benefits of a Global Earth Observation System of Systems. IEEE Systems Journal, 2008, 2, 338-348.	2.9	35
113	Implementing comprehensive offender behaviour in a realistic agent-based model of burglary. Simulation, 2012, 88, 50-71.	1.1	35
114	Accurate Attribute Mapping from Volunteered Geographic Information: Issues of Volunteer Quantity and Quality. Cartographic Journal, 2015, 52, 336-344.	0.8	35
115	Comparison of Data Fusion Methods Using Crowdsourced Data in Creating a Hybrid Forest Cover Map. Remote Sensing, 2016, 8, 261.	1.8	35
116	Citizen Science and Open Data: a model for Invasive Alien Species in Europe. Research Ideas and Outcomes, 0, 3, e14811.	1.0	35
117	Mapping Cropland in Ethiopia Using Crowdsourcing. International Journal of Geosciences, 2013, 04, 6-13.	0.2	35
118	Downgrading Recent Estimates of Land Available for Biofuel Production. Environmental Science & Technology, 2013, 47, 130128103203003.	4.6	34
119	Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover. Remote Sensing of Environment, 2018, 212, 47-59.	4.6	33
120	A Fuzzy Cellular Automata Urban Growth Model (FCAUGM) for the City of Riyadh, Saudi Arabia. Part 1: Model Structure and Validation. Applied Spatial Analysis and Policy, 2009, 2, 65-83.	1.0	32
121	Defining Fitness-for-Use for Crowdsourced Points of Interest (POI). ISPRS International Journal of Geo-Information, 2016, 5, 149.	1.4	32
122	Studying the impact of built environments on human mental health in everyday life: methodological developments, state-of-the-art and technological frontiers. Current Opinion in Psychology, 2020, 32, 158-164.	2.5	32
123	A map of the extent and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand. Scientific Data, 2021, 8, 96.	2.4	32
124	Hydroinformatics: computational intelligence and technological developments in water science applications—Editorial. Hydrological Sciences Journal, 2007, 52, 391-396.	1.2	31
125	Temporal Analysis on Contribution Inequality in OpenStreetMap: A Comparative Study for Four Countries. ISPRS International Journal of Geo-Information, 2016, 5, 5.	1.4	31
126	LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sensing, 2017, 9, 754.	1.8	31

#	Article	IF	CITATIONS
127	Enrichment of OpenStreetMap Data Completeness with Sidewalk Geometries Using Data Mining Techniques. Sensors, 2018, 18, 509.	2.1	31
128	Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery. Surveys in Geophysics, 2019, 40, 839-862.	2.1	31
129	Accurate Attribute Mapping from Volunteered Geographic Information: Issues of Volunteer Quantity and Quality. Cartographic Journal, 2015, 52, 336-344.	0.8	31
130	Constructing landscapes of value: Capitalist investment for the acquisition of marginal or unused land—The case of Tanzania. Land Use Policy, 2015, 42, 652-663.	2.5	30
131	Using OpenStreetMap (OSM) to enhance the classification of local climate zones in the framework of WUDAPT. Urban Climate, 2019, 28, 100456.	2.4	30
132	Development of a high-resolution spatial inventory of greenhouse gas emissions for Poland from stationary and mobile sources. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 853-880.	1.0	30
133	Mapping Public Urban Green Spaces Based on OpenStreetMap and Sentinel-2 Imagery Using Belief Functions. ISPRS International Journal of Geo-Information, 2021, 10, 251.	1.4	30
134	Global forest management data for 2015 at a 100 m resolution. Scientific Data, 2022, 9, 199.	2.4	30
135	The OpenStreetMap folksonomy and its evolution. Geo-Spatial Information Science, 2017, 20, 219-230.	2.4	29
136	Food Security Monitoring via Mobile Data Collection and Remote Sensing: Results from the Central African Republic. PLoS ONE, 2015, 10, e0142030.	1.1	27
137	Calibration and Validation of Agent-Based Models of Land Cover Change. , 2012, , 181-197.		27
138	Completeness of citizen science biodiversity data from a volunteered geographic information perspective. Geo-Spatial Information Science, 2017, 20, 3-13.	2.4	26
139	Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	6.0	26
140	Volunteered Geographic Information for Disaster Risk Reduction—The Missing Maps Approach and Its Potential within the Red Cross and Red Crescent Movement. Remote Sensing, 2018, 10, 1239.	1.8	26
141	A cultivated planet in 2010 – Part 1: The global synergy cropland map. Earth System Science Data, 2020, 12, 1913-1928.	3.7	26
142	Mapping growing stock volume and forest live biomass: a case study of the Polissya region of Ukraine. Environmental Research Letters, 2017, 12, 105001.	2.2	25
143	2017 IEEE GRSS Data Fusion Contest: Open Data for Global Multimodal Land Use Classification [Technical Committees]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5, 70-73.	4.9	24
144	OpenStreetMap data quality enrichment through awareness raising and collective action tools—experiences from a European project. Geo-Spatial Information Science, 2018, 21, 234-246.	2.4	24

#	Article	IF	CITATIONS
145	Conflation of expert and crowd reference data to validate global binary thematic maps. Remote Sensing of Environment, 2019, 221, 235-246.	4.6	24
146	Affordable Nutrient Solutions for Improved Food Security as Evidenced by Crop Trials. PLoS ONE, 2013, 8, e60075.	1,1	24
147	Towards an Integrated Global Land Cover Monitoring and Mapping System. Remote Sensing, 2016, 8, 1036.	1.8	22
148	Independent data for transparent monitoring of greenhouse gas emissions from the land use sector – What do stakeholders think and need?. Environmental Science and Policy, 2018, 85, 101-112.	2.4	22
149	Mapping physical access to health care for older adults in sub-Saharan Africa and implications for the COVID-19 response: a cross-sectional analysis. The Lancet Healthy Longevity, 2020, 1, e32-e42.	2.0	22
150	Estimating global economic well-being with unlit settlements. Nature Communications, 2022, 13, 2459.	5.8	22
151	Using Crowdsourced Geodata for Agent-Based Indoor Evacuation Simulations. ISPRS International Journal of Geo-Information, 2012, 1, 186-208.	1.4	21
152	Increasing the Accuracy of Crowdsourced Information on Land Cover via a Voting Procedure Weighted by Information Inferred from the Contributed Data. ISPRS International Journal of Geo-Information, 2018, 7, 80.	1.4	21
153	A Fuzzy Cellular Automata Urban Growth Model (FCAUGM) for the City of Riyadh, Saudi Arabia. Part 2: Scenario Testing. Applied Spatial Analysis and Policy, 2009, 2, 85-105.	1.0	20
154	A Spatial Multi-Criteria Model for the Evaluation of Land Redistribution Plans. ISPRS International Journal of Geo-Information, 2012, 1, 272-293.	1.4	20
155	A local scale-sensitive indicator of spatial autocorrelation for assessing high- and low-value clusters in multiscale datasets. International Journal of Geographical Information Science, 2015, 29, 868-887.	2.2	20
156	Graph-Based Matching of Points-of-Interest from Collaborative Geo-Datasets. ISPRS International Journal of Geo-Information, 2018, 7, 117.	1.4	20
157	A spatial assessment of the forest carbon budget for Ukraine. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 985-1006.	1.0	19
158	Crowdsourcing LUCAS: Citizens Generating Reference Land Cover and Land Use Data with a Mobile App. Land, 2020, 9, 446.	1.2	19
159	A neural mechanism for affective well-being: Subgenual cingulate cortex mediates real-life effects of nonexercise activity on energy. Science Advances, 2020, 6, .	4.7	19
160	Using computational intelligence techniques to model subglacial water systems. Journal of Geographical Systems, 1999, 1, 37-60.	1.9	18
161	An integrated planning and decision support system (IPDSS) for land consolidation: theoretical framework and application of the land-redistribution modules. Environment and Planning B: Planning and Design, 2012, 39, 609-628.	1.7	18
162	Semantic Interoperability of Sensor Data with Volunteered Geographic Information: A Unified Model. ISPRS International Journal of Geo-Information, 2013, 2, 766-796.	1.4	18

#	Article	IF	CITATIONS
163	Limitations of Majority Agreement in Crowdsourced Image Interpretation. Transactions in GIS, 2017, 21, 207-223.	1.0	18
164	Routing through open spaces – A performance comparison of algorithms. Geo-Spatial Information Science, 2018, 21, 247-256.	2.4	18
165	Using urban climate modelling and improved land use classifications to support climate change adaptation in urban environments: A case study for the city of Klagenfurt, Austria. Urban Climate, 2020, 31, 100582.	2.4	18
166	The value of citizen science for flood risk reduction: cost–benefit analysis of a citizen observatory in the Brenta-Bacchiglione catchment. Hydrology and Earth System Sciences, 2020, 24, 5781-5798.	1.9	18
167	Mood Dimensions Show Distinct Within-Subject Associations With Non-exercise Activity in Adolescents: An Ambulatory Assessment Study. Frontiers in Psychology, 2018, 9, 268.	1.1	17
168	A Multi-Sensor Fusion Framework Based on Coupled Residual Convolutional Neural Networks. Remote Sensing, 2020, 12, 2067.	1.8	17
169	TOWARDS CONSISTENT MAPPING OF URBAN STRUCTURES – GLOBAL HUMAN SETTLEMENT LAYER AND LOCAL CLIMATE ZONES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B8, 1371-1378.	0.2	17
170	Supporting Earth-Observation Calibration and Validation: A new generation of tools for crowdsourcing and citizen science. IEEE Geoscience and Remote Sensing Magazine, 2016, 4, 38-50.	4.9	16
171	Guided Classification System for Conceptual Overlapping Classes in OpenStreetMap. ISPRS International Journal of Geo-Information, 2016, 5, 87.	1.4	16
172	Coupling maximum entropy modeling with geotagged social media data to determine the geographic distribution of tourists. International Journal of Geographical Information Science, 2018, 32, 1699-1736.	2.2	16
173	Open source data mining infrastructure for exploring and analysing OpenStreetMap. Open Geospatial Data, Software and Standards, 2018, 3, .	4.3	16
174	An Exploration of Some Pitfalls of Thematic Map Assessment Using the New Map Tools Resource. Remote Sensing, 2018, 10, 376.	1.8	16
175	High-resolution spatial distribution of greenhouse gas emissions in the residential sector. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 941-967.	1.0	16
176	The Return of Nature to the Chernobyl Exclusion Zone: Increases in Forest Cover of 1.5 Times Since the 1986 Disaster. Forests, 2021, 12, 1024.	0.9	16
177	Deriving incline values for street networks from voluntarily collected GPS traces. Cartography and Geographic Information Science, 2017, 44, 152-169.	1.4	15
178	Demonstrating the potential of Picture Pile as a citizen science tool for SDG monitoring. Environmental Science and Policy, 2022, 128, 81-93.	2.4	15
179	Improving OpenStreetMap missing building detection using fewâ€shot transfer learning in subâ€5aharan Africa. Transactions in GIS, 2022, 26, 3125-3146.	1.0	15
180	Highlighting Current Trends in Volunteered Geographic Information. ISPRS International Journal of Geo-Information, 2017, 6, 202.	1.4	14

#	Article	IF	CITATIONS
181	Assessing spatiotemporal predictability of LBSN: a case study of three Foursquare datasets. GeoInformatica, 2018, 22, 541-561.	2.0	14
182	Towards Detecting Building Facades with Graffiti Artwork Based on Street View Images. ISPRS International Journal of Geo-Information, 2020, 9, 98.	1.4	14
183	Comparing Expert and Non-expert Conceptualisations of the Land: An Analysis of Crowdsourced Land Cover Data. Lecture Notes in Computer Science, 2013, , 243-260.	1.0	14
184	The role of combining national official statistics with global monitoring to close the data gaps in the environmental SDGs. Statistical Journal of the IAOS, 2020, 36, 443-453.	0.2	14
185	Drivers of tropical forest loss between 2008 and 2019. Scientific Data, 2022, 9, 146.	2.4	14
186	Local Knowledge and Professional Background Have a Minimal Impact on Volunteer Citizen Science Performance in a Land-Cover Classification Task. Remote Sensing, 2016, 8, 774.	1.8	13
187	Tracking Rates of Forest Disturbance and Associated Carbon Loss in Areas of Illegal Amber Mining in Ukraine Using Landsat Time Series. Remote Sensing, 2020, 12, 2235.	1.8	13
188	Use of Automated Change Detection and VGI Sources for Identifying and Validating Urban Land Use Change. Remote Sensing, 2020, 12, 1186.	1.8	13
189	Citizen Science and the Role in Sustainable Development. Sustainability, 2021, 13, 5676.	1.6	13
190	Using OpenStreetMap to Create Land Use and Land Cover Maps. Advances in Geospatial Technologies Book Series, 2017, , 113-137.	0.1	13
191	LACO-WIKI: AN OPEN ACCESS ONLINE PORTAL FOR LAND COVER VALIDATION. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, II-3/W5, 167-171.	0.0	13
192	A crowdsourced global data set for validating built-up surface layers. Scientific Data, 2022, 9, 13.	2.4	13
193	Developing a community-based worldwide urban morphology and materials database (WUDAPT) using remote sensing and crowdsourcing for improved urban climate modelling. , 2015, , .		12
194	The ESA's Earth Observation Open Science Program [Space Agencies]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5, 86-96.	4.9	12
195	What do we know about poverty in North Korea?. Palgrave Communications, 2020, 6, .	4.7	12
196	Generating crop calendars with Web search data. Environmental Research Letters, 2012, 7, 024022.	2.2	11
197	Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis. PLoS ONE, 2016, 11, e0162360.	1.1	11
198	Geographically weighted evidence combination approaches for combining discordant and inconsistent volunteered geographical information. GeoInformatica, 2016, 20, 503-527.	2.0	11

#	Article	IF	CITATIONS
199	Validation of Automatically Generated Global and Regional Cropland Data Sets: The Case of Tanzania. Remote Sensing, 2017, 9, 815.	1.8	11
200	Developing an Individual-level Geodemographic Classification. Applied Spatial Analysis and Policy, 2018, 11, 417-437.	1.0	11
201	An exploratory analysis of usability of Flickr tags for land use/land cover attribution. Geo-Spatial Information Science, 2019, 22, 12-22.	2.4	11
202	Relationships between incidental physical activity, exercise, and sports with subsequent mood in adolescents. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 2234-2250.	1.3	11
203	Regional variations of contextâ€based association rules in OpenStreetMap. Transactions in GIS, 2021, 25, 602-621.	1.0	11
204	Choice of forest map has implications for policy analysis: A case study on the EU biofuel target. Environmental Science and Policy, 2012, 22, 13-24.	2.4	10
205	Using OpenStreetMap data to assist in the creation of LCZ maps. , 2017, , .		10
206	An Experimental Framework for Integrating Citizen and Community Science into Land Cover, Land Use, and Land Change Detection Processes in a National Mapping Agency. Land, 2018, 7, 103.	1.2	10
207	An analysis of the spatial and temporal distribution of largeâ€scale data production events in OpenStreetMap. Transactions in GIS, 2021, 25, 622-641.	1.0	10
208	The Impact of Community Happenings in OpenStreetMap—Establishing a Framework for Online Community Member Activity Analyses. ISPRS International Journal of Geo-Information, 2021, 10, 164.	1.4	10
209	Automatic mapping of national surface water with OpenStreetMap and Sentinel-2 MSI data using deep learning. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102571.	1.4	10
210	Lessons learned in developing reference data sets with the contribution of citizens: the Geo-Wiki experience. Environmental Research Letters, 2022, 17, 065003.	2.2	10
211	Community initiative tackles urban heat. Nature, 2015, 526, 43-43.	13.7	9
212	Assessing and Improving the Reliability of Volunteered Land Cover Reference Data. Remote Sensing, 2017, 9, 1034.	1.8	9
213	Do people communicate about their whereabouts? Investigating the relation between user-generated text messages and Foursquare check-in places. Geo-Spatial Information Science, 2018, 21, 159-172.	2.4	9
214	Capturing and communicating impact of citizen science for policy: A storytelling approach. Journal of Environmental Management, 2021, 295, 113082.	3.8	9
215	THE PICTURE PILE TOOL FOR RAPID IMAGE ASSESSMENT: A DEMONSTRATION USING HURRICANE MATTHEW. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-4, 27-32.	0.0	9
216	A Continental Assessment of the Drivers of Tropical Deforestation With a Focus on Protected Areas. Frontiers in Conservation Science, 2022, 3, .	0.9	9

#	Article	IF	CITATIONS
217	Rainfall-Runoff Modelling using Data Driven and Statistical Methods. , 2006, , .		8
218	Proposal for a Web Processing Services (WPS) Application Profile for 3D Processing Analysis. , 2010, , .		8
219	A Meta-Analysis on the Return on Investment of Geospatial Data and Systems: A Multi-Country Perspective. Transactions in GIS, 2015, 19, 169-187.	1.0	8
220	AgroTutor: A Mobile Phone Application Supporting Sustainable Agricultural Intensification. Sustainability, 2020, 12, 9309.	1.6	8
221	The Sketch Map Tool Facilitates the Assessment of OpenStreetMap Data for Participatory Mapping. ISPRS International Journal of Geo-Information, 2021, 10, 130.	1.4	8
222	Building a Crowd-Sourcing Tool for the Validation of Urban Extent and Gridded Population. Lecture Notes in Computer Science, 2011, , 39-50.	1.0	8
223	CLASSIFICATION OF BUILDING FUNCTION USING AVAILABLE SOURCES OF VGI. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-4, 209-215.	0.2	8
224	A data fusion-based framework to integrate multi-source VGI in an authoritative land use database. International Journal of Digital Earth, 2021, 14, 480-509.	1.6	7
225	The association of stress and physical activity: Mind the ecological fallacy. German Journal of Exercise and Sport Research, 2022, 52, 282.	1.0	7
226	Soil remedies for small-scale farming. Nature, 2012, 484, 318-318.	13.7	6
227	The Rise of Collaborative Mapping: Trends and Future Directions. ISPRS International Journal of Geo-Information, 2013, 2, 955-958.	1.4	6
228	Detecting repetitive structures on building footprints for the purposes of 3D modeling and reconstruction. International Journal of Digital Earth, 2017, 10, 785-797.	1.6	6
229	Towards Detecting the Crowd Involved in Social Events. ISPRS International Journal of Geo-Information, 2017, 6, 305.	1.4	6
230	Feasibility of Using Grammars to Infer Room Semantics. Remote Sensing, 2019, 11, 1535.	1.8	6
231	Leveraging Street Level Imagery for Urban Planning. Environment and Planning B: Urban Analytics and City Science, 2022, 49, 773-776.	1.0	6
232	How many people need to classify the same image? A method for optimizing volunteer contributions in binary geographical classifications. PLoS ONE, 2022, 17, e0267114.	1.1	6
233	Learning and teaching online with the UK census. Journal of Geography in Higher Education, 2004, 28, 229-245.	1.4	5
234	Open-data-driven embeddable quality management services for map-based web applications. Big Earth Data, 2018, 2, 395-422.	2.0	5

#	Article	IF	CITATIONS
235	Data-driven approach to learning salience models of indoor landmarks by using genetic programming. International Journal of Digital Earth, 2020, 13, 1230-1257.	1.6	5
236	ASSESSING THE ACCURACY OF LAND USE LAND COVER (LULC) MAPS USING CLASS PROPORTIONS IN THE REFERENCE DATA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2020, 669-674.	0.0	5
237	Geography Geo-Wiki in the Classroom: Using Crowdsourcing to Enhance Geographical Teaching. Future Internet, 2014, 6, 597-611.	2.4	4
238	Beyond sharing Earth observations. Nature, 2014, 514, 168-168.	13.7	4
239	Optimising an Agent-Based Model to Explore the Behaviour of Simulated Burglars. Intelligent Systems Reference Library, 2014, , 179-204.	1.0	4
240	Using OpenStreetMap to Create Land Use and Land Cover Maps. , 2019, , 1100-1123.		4
241	Fusing multi-model hydrological data. , 0, , .		3
242	CA City: Simulating Urban Growth through the Application of Cellular Automata. , 0, , .		3
243	Current issues and uncertainties in estimating global land availability for biofuel production. Biofuels, 2013, 4, 343-345.	1.4	3
244	Validating Spatial Patterns of Urban Growth from a Cellular Automata Model. , 0, , .		3
245	Mapping Human Impact Using Crowdsourcing. , 2016, , 89-101.		3
246	Volunteered geographic information: looking towards the next 10Âyears. Journal of Geographical Systems, 2019, 21, 1-3.	1.9	3
247	Data Fusion Methods for Integrating Data-driven Hydrological Models. Studies in Computational Intelligence, 2008, , 1-18.	0.7	3
248	A PRELIMINARY QUALITY ANALYSIS OF THE CLIMATE CHANGE INITIATIVE LAND COVER PRODUCTS FOR CONTINENTAL PORTUGAL. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W13, 1213-1220.	0.2	3
249	Quiet Route Planning for Pedestrians in Traffic Noise Polluted Environments. IEEE Transactions on Intelligent Transportation Systems, 2020, , 1-12.	4.7	3
250	Extreme Citizen Science Contributions to the Sustainable Development Goals: Challenges and Opportunities for a Human-Centred Design Approach. Lecture Notes in Computer Science, 2022, , 20-35.	1.0	3
251	Citizens add to satellite forest maps. Nature, 2012, 490, 342-342.	13.7	2
252	Integrating GIS and genetic algorithms for automating land partitioning. Proceedings of SPIE, 2014, , .	0.8	2

#	Article	IF	CITATIONS
253	The Cropland Capture Game: Good Annotators Versus Vote Aggregation Methods. Advances in Intelligent Systems and Computing, 2016, , 167-180.	0.5	2
254	The 2017 IEEE Geoscience and Remote Sensing Society Data Fusion Contest: Open Data for Global Multimodal Land Use Classification [Technical Committees]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5, 110-114.	4.9	2
255	A cost–benefit analysis of implementing urban heat island adaptation measures in small- and medium-sized cities in Austria. Environment and Planning B: Urban Analytics and City Science, 2021, 48, 2326-2345.	1.0	2
256	Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning. International Journal of Geographical Information Science, 0, , 1-29.	2.2	2
257	Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. , 0, .		2
258	Vote Aggregation Techniques in the Geo-Wiki Crowdsourcing Game: A Case Study. Communications in Computer and Information Science, 2017, , 41-50.	0.4	2
259	LACONISS: A Planning Support System for Land Consolidation. Lecture Notes in Geoinformation and Cartography, 2013, , 73-90.	0.5	2
260	Urban Geo-Wiki. Advances in Electronic Government, Digital Divide, and Regional Development Book Series, 2013, , 119-143.	0.2	2
261	Optimizing Crowdsourced Land Use and Land Cover Data Collection: A Two-Stage Approach. Land, 2022, 11, 958.	1.2	2
262	Crowdsourcing In-Situ Data Collection Using Gamification. , 2021, , .		1
263	Towards a Hydrological Research Agenda. , 2004, , 289-304.		1
264	Simulating the spatial distribution of pollutant loads from pig farming using an agent-based modeling approach. Environmental Science and Pollution Research, 2022, 29, 42037-42054.	2.7	1
265	Forecasting River Stage with Artificial Neural Networks. , 2006, , 353-373.		Ο
266	Comparison of global land cover products: community remote sensing to validate areas of high disagreement. , 2010, , .		0
267	Spatial Analysis as a Transformative Technology for Decision-Making in Environmental Domains. ISPRS International Journal of Geo-Information, 2015, 4, 1770-1773.	1.4	Ο
268	Why Use Neural Networks?. , 2004, , 1-13.		0
269	Professor Stan Openshaw (1946–2022). Environment and Planning B: Urban Analytics and City Science, 2022, 49, 1585-1587.	1.0	Ο