
Patrick D Broxton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3672030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. Journal of Advances in Modeling Earth Systems, 2016, 8, 41-65.	1.3	161
2	Snowpack Change From 1982 to 2016 Over Conterminous United States. Geophysical Research Letters, 2018, 45, 12,940.	1.5	87
3	Why Do Global Reanalyses and Land Data Assimilation Products Underestimate Snow Water Equivalent?. Journal of Hydrometeorology, 2016, 17, 2743-2761.	0.7	72
4	Improving Snow Water Equivalent Maps With Machine Learning of Snow Survey and Lidar Measurements. Water Resources Research, 2019, 55, 3739-3757.	1.7	65
5	Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth. Earth and Space Science, 2016, 3, 246-256.	1.1	55
6	Intercomparison of Seven NDVI Products over the United States and Mexico. Remote Sensing, 2014, 6, 1057-1084.	1.8	50
7	Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 (CLM4.5). Journal of Climate, 2016, 29, 3441-3461.	1.2	49
8	A Wetâ€Bulb Temperatureâ€Based Rainâ€5now Partitioning Scheme Improves Snowpack Prediction Over the Drier Western United States. Geophysical Research Letters, 2019, 46, 13825-13835.	1.5	39
9	Evaluation of Remotely Sensed Snow Water Equivalent and Snow Cover Extent over the Contiguous United States. Journal of Hydrometeorology, 2018, 19, 1777-1791.	0.7	37
10	A New Snow Density Parameterization for Land Data Initialization. Journal of Hydrometeorology, 2017, 18, 197-207.	0.7	36
11	An Evaluation of Snow Initializations in NCEP Global and Regional Forecasting Models. Journal of Hydrometeorology, 2016, 17, 1885-1901.	0.7	25
12	Estimating the Effects of Forest Structure Changes From Wildfire on Snow Water Resources Under Varying Meteorological Conditions. Water Resources Research, 2020, 56, e2020WR027071.	1.7	24
13	Using Process Based Snow Modeling and Lidar to Predict the Effects of Forest Thinning on the Northern Sierra Nevada Snowpack. Frontiers in Forests and Global Change, 2020, 3, .	1.0	19
14	Increasing the efficacy of forest thinning for snow using highâ€resolution modeling: A proof of concept in the Lake Tahoe Basin, California, USA. Ecohydrology, 2020, 13, e2203.	1.1	15
15	Forest cover and topography regulate the thin, ephemeral snowpacks of the semiarid Southwest United States. Ecohydrology, 2020, 13, e2202.	1.1	14
16	The Impact of a Low Bias in Snow Water Equivalent Initialization on CFS Seasonal Forecasts. Journal of Climate, 2017, 30, 8657-8671.	1.2	12
17	Accounting for Fine cale Forest Structure is Necessary to Model Snowpack Mass and Energy Budgets in Montane Forests. Water Resources Research, 2021, 57, e2021WR029716.	1.7	10
18	Structure from Motion of Multi-Angle RPAS Imagery Complements Larger-Scale Airborne Lidar Data for Cost-Effective Snow Monitoring in Mountain Forests. Remote Sensing, 2020, 12, 2311.	1.8	8

#	Article	IF	CITATIONS
19	Assessment of Snowfall Accumulation from Satellite and Reanalysis Products Using SNOTEL Observations in Alaska. Remote Sensing, 2021, 13, 2922.	1.8	7